Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.5.351

Current Research Trends in Polyamide Based Nanocomposite Membranes for Desalination  

Lee, Tae Hoon (Department of Energy Engineering, Hanyang University)
Lee, Hee Dae (Department of Energy Engineering, Hanyang University)
Park, Ho Bum (Department of Energy Engineering, Hanyang University)
Publication Information
Membrane Journal / v.26, no.5, 2016 , pp. 351-364 More about this Journal
Abstract
In recent decades, many researchers have tried to improve desalination performances of polyamide (PA) thin-film composite membranes (TFCs) by incorporating nanomaterials into a selective PA layer. This review focuses on PA-based nanocomposite membranes with high performances for energy-effective desalination in reverse osmosis. Carbon based nanomaterial (e.g., graphene oxide (GO), carbon nanotubes (CNT)) and/or other nanoparticles (e.g., zeolite, silica and etc.,) were applied to overcome the trade-off correlation between water permeability and salt rejection of current polymeric desalination membranes. Here, this brief review will discuss current studies of PA-based nanocomposite membranes with enhanced separation characteristics and provide the future research direction to achieve further improved desalination performances.
Keywords
Polyamide; Nanocomposite; Desalination; Reverse osmosis; High flux membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Dong, L. Zhao, L. Zhang, H. L. Chen, C. J. Gao, and W. S. W. Ho, "High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination", J. Membr. Sci., 476, 373 (2015).   DOI
2 H. Huang, X. Y. Qu, H. Dong, L. Zhang, and H. L. Chen, "Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane", Rsc. Adv., 3, 8203 (2013).   DOI
3 X. Ma, N. H. Lee, H. J. Oh, J. S. Hwang, and S. J. Kim, "Preparation and characterization of silica/polyamide-imide nanocomposite thin films", Nanoscale. Res. Lett., 5, 1846 (2010).   DOI
4 S. G. Kim, J. H. Chun, B. H. Chun, and S. H. Kim, "Preparation, characterization and performance of poly(aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination", Desalination, 325, 76 (2013).   DOI
5 C. X. C. Lin, L. P. Ding, S. Smart, and J. C. D. da Costa, "Cobalt oxide silica membranes for desalination", J. Colloid. Interface Sci., 368, 70 (2012).   DOI
6 A. Peyki, A. Rahimpour, and M. Jahanshahi, "Preparation and characterization of thin film composite reverse osmosis membranes incorporated with hydrophilic $SiO_{2}$ nanoparticles", Desalination, 368, 152 (2015).   DOI
7 J. Yin, E. S. Kim, J. Yang, and B. L. Deng, "Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification", J. Membr. Sci., 423, 238 (2012).
8 H. Q. Wu, B. B. Tang, and P. Y. Wu, "Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles", J. Membr. Sci., 428, 341 (2013).   DOI
9 L. J. Murray, M. Dinca, and J. R. Long, "Hydrogen storage in metal-organic frameworks", Chem. Soc. Rev., 38, 1294 (2009).   DOI
10 A. Ahmad, S. Waheed, S. M. Khan, S. e-Gul, M. Shafiq, M. Farooq, K. Sanaullah, and T. Jamil, "Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis", Desalination, 355, 1 (2015).   DOI
11 J. Kuhn, S. Sutanto, J. Gascon, J. Gross, and F. Kapteijn, "Performance and stability of multi-channel MFI zeolite membranes detemplated by calcination and ozonication in ethanol/water pervaporation", J. Membr. Sci., 339, 261 (2009).   DOI
12 J. T. Duan, Y. C. Pan, F. Pacheco, E. Litwiller, Z. P. Lai, and I. Pinnau, "High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8", J. Membr. Sci., 476, 303 (2015).   DOI
13 Q. L. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, and E. Sivaniah, "Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy Environ. Sci., 5, 8359 (2012).   DOI
14 M. J. C. Ordonez, K. J. Balkus, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/Matrimid (R) mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010).   DOI
15 A. F. Bushell, M. P. Attfield, C. R. Mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, "Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8", J. Membr. Sci., 427, 48 (2013).   DOI
16 S. H. Kim, S. Y. Kwak, B. H. Sohn, and T. H. Park, "Design of $TiO_{2}$ nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem", J. Membr. Sci., 211, 157 (2003).   DOI
17 M. Ben-Sasson, X. L. Lu, E. Bar-Zeev, K. R. Zodrow, S. Nejati, G. G. Qi, E. P. Giannelis, and M. Elimelech, "In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation", Water Res., 62, 260 (2014).   DOI
18 G. M. Geise, H. S. Lee, D. J. Miller, B. D. Freeman, J. E. Mcgrath, and D. R. Paul, "Water purification by membranes: The role of polymer science", J. Polym. Sci. Pol. Phys., 48, 1685 (2010).   DOI
19 http://www.greenfacts.org/en/water-resources (2008).
20 T. Evans and R. Beaglehole, "World Health Organization. The world health report 2003: shaping the future", World Health Organization, Switzerland (2003).
21 G. M. Geise, H. B. Park, A. C. Sagle, B. D. Freeman, and J. E. McGrath, "Water permeability and water/salt selectivity tradeoff in polymers for desalination", J. Membr. Sci., 369, 130 (2011).   DOI
22 N. Misdan, W. J. Lau, and A. F. Ismail, "Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects", Desalination, 287, 228 (2012).   DOI
23 A. K. Ghosh, B. H. Jeong, X. F. Huang, and E. M. V. Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties", J. Membr. Sci., 311, 34 (2008).   DOI
24 S. Y. Kwak, S. G. Jung, and S. H. Kim, "Structure-motion-performance relationship of fluxenhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films", Environ. Sci. Technol, 35, 4334 (2001).   DOI
25 B. H. Jeong, E. M. V. Hoek, Y. S. Yan, A. Subramani, X. F. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294, 1 (2007).   DOI
26 W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. P. Chen, and A. F. Ismail, "A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches", Water Res., 80, 306 (2015).   DOI
27 W. G. Jang, J. H. Yun, and H. Byun, "Preparation of PAN nanofiber composite membrane with $Fe_{3}O_{4}$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014).   DOI
28 M. S. Lee and K. H. Youm, "Preparation of PES-$TiO_{2}$ hybrid membranes and evaluation of membrane properties", Membr. J., 17, 219 (2007).
29 M. Mulder, "Basic principles of membrane technology", 210, Springer Science & Business Media, Berlin (1996).
30 J. K. Koh, D. K. Roh, R. Patel, Y. G. Shul, and J. H. Kim, "Preparation and characterization of graft Copolymer/$TiO_{2}$ nanocomposite polymer electrolyte membranes", Membr. J., 20, 1 (2009).
31 Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater., 22, 3906 (2010).   DOI
32 H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013).   DOI
33 H. R. Chae, J. Lee, C. H. Lee, I. C. Kim, and P. K. Park, "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance", J. Membr. Sci., 483, 128 (2015).   DOI
34 M. E. A. Ali, L. Y. Wang, X. Y. Wang, and X. S. Feng, "Thin film composite membranes embedded with graphene oxide for water desalination", Desalination, 386, 67 (2016).   DOI
35 J. H. Li, H. Z. Chang, L. Ma, J. M. Hao, and R. T. Yang, "Low-temperature selective catalytic reduction of NOx with $NH_{3}$ over metal oxide and zeolite catalysts-A review", Catal. Today, 175, 147 (2011).   DOI
36 M. Ionita, E. Vasile, L. E. Crica, S. I. Voicu, A. M. Pandele, S. Dinescu, L. Predoiu, B. Galateanu, A. Hermenean, and M. Costache, "Synthesis, characterization and in vitro studies of polysulfone/graphene oxide composite membranes", Compos. Part B-Eng., 72, 108 (2015).
37 H. D. Lee, H. W. Kim, Y. H. Cho, and H. B. Park, "Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes", Small, 10, 2653 (2014).   DOI
38 H. J. Kim, M. Y. Lim, K. H. Jung, D. G. Kim, and J. C. Lee, "High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides", J. Mater. Chem. A, 3, 6798 (2015).   DOI
39 S. Inukai, R. Cruz-Silva, J. Ortiz-Medina, A. Morelos-Gomez, K. Takeuchi, T. Hayashi, A. Tanioka, T. Araki, S. Tejima, T. Noguchi, M. Terrones, and M. Endo, "High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube.polyamide nanocomposite", Scientific Rep., 5, (2015).
40 N. C. Srivastava and I. W. Eames, "A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems", Appl. Therm. Eng., 18, 707 (1998).   DOI
41 V. J. Inglezakis, "The concept of "capacity" in zeolite ion-exchange systems", J. Colloid Interface Sci., 281, 68 (2005).   DOI
42 M. M. Pendergast and E. M. V. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011).   DOI
43 J. Lin and S. Murad, "A computer simulation study of the separation of aqueous solutions using thin zeolite membranes", Mol. Phys., 99, 1175 (2001).   DOI
44 M. Kazemimoghadam, "New nanopore zeolite membranes for water treatment", Desalination, 251, 176 (2010).   DOI
45 L. X. Li, J. H. Dong, and T. M. Nenoff, "Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis", Sep. Purif. Technol., 53, 42 (2007).   DOI