• Title/Summary/Keyword: 쏘일네일사면

Search Result 49, Processing Time 0.026 seconds

Pullout Resistance of Pressurized Soil-Nailing by Cavity Expansion Theory (공팽창이론에 의한 압력식 쏘일네일링의 인발저항력 산정)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.35-46
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of mean normal stress and the increase of coefficient of pullout friction. From laboratory tests, it was found that dilatancy angle could be estimated by modified cavity expansion theory using the measured wall displacements. The radial displacement increases with dilatancy angle decrease and the dilatancy angle increases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the modified cavity expansion theory.

A study on the optimization technique for the plan of slope reinforcement arrangement of soil-nailing in tunnel portal area (터널 갱구사면 쏘일네일링 보강배치계획을 위한 최적화기법 연구)

  • Kim, Byung-Chan;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.569-579
    • /
    • 2016
  • In order to ensure the stability of tunnel portal slope, reinforcement method such as anchors, soil nails and rock bolts have been used in Korea. When selecting slope reinforcement methods in tunnel portal area such as reinforcement arrangement and length, trial and error method can be very time-consuming and it was also not easy to verify the selection of an optimum condition. In this study, using the FISH language embedded in the finite difference code FLAC3D program, the optimization technique was developed with the Differential Evolution Algorithm (DEA). After building a database on the soil nailing method in tunnel portal area, this system can be selected to an optimum arrangement plan based on the factor of safety through the FLAC3D analysis. Through the results of numerical analysis, it was confirmed that the number of analysis was decreased by about 8 times when DEA based optimization technique was used compared to the full combination (FC). In case of the design of slope reinforcement in tunnel portal area, if this built-system is used, it is expected that the selection of an optimum arrangement plan can be relatively easier.

Numerical Analysis on the Behavior of a Slope with Upward Drainable Soil Nails during Rainfall (수치해석을 통한 상향식 배수겸용 쏘일네일링에 대한 강우모형사면 거동 연구)

  • Kim, Young-Nam;Lee, Choul-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.11-22
    • /
    • 2014
  • In this study, numerical analyses and model tests were conducted to figure out the behavior of a slope reinforced by upward drainable soil nails during rainfall. The model tests were carried out on both reinforced and unreinforced slopes. To verify the results of the tests, seepage analyses were performed and compared with the test results using a commercial program, SEEP/W. The results showed that the numerical analyses have in overall a good agreement with the experiments in the variations of ground water level and pore water pressure even though there is some time delay for the experiment before the changes in the ground water level and pore water pressure after rainfall are observed, while the numerical analyses not.

Field Pullout Tests and Stability Evaluation of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 현장인발시험 및 안정성 평가)

  • Kim, Hong-Taek;Choi, Young-Geun;Park, Si-Sam;Kim, Berm-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.27-40
    • /
    • 2003
  • In the present study, a newly modified soil nailing technology named as the PSN(Pretension Soil Nailing) system is proposed. Effects of various factors related to the design of the pretension soil nailing system, such as the length of a sheathing pipe and the fixed cone, are examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests are performed in the present study and the pretension forces are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. A numerical approach is further made to determine a postulated failure surface as well as a minimum safety factors of the proposed PSN system using the shear strength reduction technique and the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system are analyzed throughout comparisons with the results expected in case of the general soil nailing system. An efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

An Experimental Study on Behavior Characteristics of the Pretension Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 거동특성에 관한 실험적 고찰)

  • Choi, Young-Geun;Shin, Bang-Woong;Park, Si-Sam;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Application of the soil nailing method is continuously extending in maintaining stable excavations and slopes. However, ground anchor support system occasionally may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve local stability. In this study, a newly modified soil nailing technology named as the PSN (Pretension Soil Nailing) is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the PSN system. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

A Study for on Application of Bamboo Soil Nailing System (대나무 쏘일네일링의 적용성에 관한 연구)

  • Bang Yoon-Kyung;Kim Hong-Taek;Yoo Si-Dong;Yoo Chan-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.31-40
    • /
    • 2005
  • In this study, a newly modified soil nailing technology which uses bamboo, rich natural material growing in southern areas, is developed to prevent the soil pollution and to overcome the difficulty of excavation near existing structures. Experimental and analytical studies were performed to confirm application possibility of bamboo taking the place of existent reinforcement material, that is steelbar, FRP and etc. In experimental study, strength characteristics of bamboo material were analyzed, and pull-out resistance of bamboo soil nailing system by field pull-out tests was examined. In analytical study, limit equilibrium analysis and displacement analysis were performed, and application possibility of bamboo soil nailing system was analyzed. As the result of this study, bamboo has comparatively good strength and pull-out resistance characteristics. It is expected that bamboo can be used as satisfactory reinforcement material by selecting bamboo with reguired diameter and by controlling the number of bamboo strips. Bamboo is an alternative for the reinforcement of soil nailing system, especially temporary support system in excavation near the existing structures.

Experimental Study of Down-Scaled Model Slope on the Variation of the Ground Water Level of Drainable Soil Nailing (배수겸용 쏘일네일링의 지하수위 변화에 관한 축소모형사면 실험연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • This study aims at investigating the behavior of the ground water level when installing upward soil nails that drain water as well. To do this, a series of down-scaled model tests were conducted. A model slope with weathered soils was prepared and then an artificial rain was scattered on the slope. The relative densities of soil specimen were 60%, 75%, and 90%, and the rainfall intensities 50mm/hr, 75mm/hr, 100mm/hr, and 125mm/hr, respectively. The experimental parameters, such as the ground water level, ratio of soil runoff, and failure mode of the slope were measured and analyzed. As the results, It may be concluded that the ground water level in the slope supported by drainable upward soil nails increases very gradually while the unsupported soil changes dramatically. In addition, the ground water level becomes constant and no failure occurs as time goes by. In case of the relative density of 75%, the runoff ratio seemed to increase up to about 8~15% after reinforcement.