• Title/Summary/Keyword: 쌍극자배열

Search Result 70, Processing Time 0.028 seconds

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.

Environmental Geophysical Survey of Abandoned Landfills for Contamination Evaluation: A Case Study (불량 매립지 오염평가를 위한 지구물리 탐사 사례연구)

  • Lee, Sung-Soon;Lee, Jin-Yong;Yoon, Hee-Sung;Lee, Kang-Kun;Kim, Chang-Gyun;Yu, Young-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.463-471
    • /
    • 2006
  • Electrical resistivity surveys were conducted at areas of abandoned landfills in Cheonan and Wonju. Geology and extent of leachate migration around the landfills were evaluated with collected resistivity data by 2-D and 3-D resistivity inverse modeling. The Cheonan landfill is located above the paddy fields and the resistivity survey lines were crossed to examine possible pollution at the paddy fields by leakage of the landfill leachate. In Wonju, the landfill and the downgradient paddy fields are divided by a concrete barrier wall. At the bottom of the landfill, there is a leachate settlement system, which has not been in operation. To evaluate leachate leakage into the paddy fields, a total of 4 survey lines were used. According to the resistivity survey results, the landfill leachate in Cheonan appeared to be restricted only within the interior of the landfill, not to migrate into the subsurface of the paddy fields. These results are well consistent with electrical conductivity values of groundwaters obtained from a periodic analysis of water qualities. In Wonju, however, it was inferred that the leachate emanating from the landfill migrated beneath the abandoned leachate settlement system and the leachate would reach the downgradient paddy fields. Low resistivity area was observed in the old reservoir area and it appeared to be derived from convergence of groundwater flows from the surrounding valley and the moist wet land. In addition, groundwater flow into the paddy fields occurs beneath the old reservoir embankment at depths of $7{\sim}8m$. This paper reports details of the resistivity surveys for the uncontrolled landfills.

Effective Geophysical Methods in Detecting Subsurface Caves: On the Case of Manjang Cave, Cheju Island (지하 동굴 탐지에 효율적인 지구물리탐사기법 연구: 제주도 만장굴을 대상으로)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Lee, Gyu-Ho;Rim, Hyoung-Rea;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.408-422
    • /
    • 2000
  • Multiple geophysical methods were applied over the Manjang cave area in Cheju Island to compare and contrast the effectiveness of each method for exploration of underground cavities. The used methods are gravity, magnetic, electrical resistivity and GPR(Ground Pentrating Radar) survey, of which instruments are portable and operations are relatively economical. We have chosen seven survey lines and applied appropriate multiple surveys depending on the field conditions. In the case of magnetic method. two-dimensional grid-type surveys were carried out to cover the survey area. The geophysical survey results reveal the characteristic responses of each method relatively well. Among the applied methods, the electric resistivity methods appeared to be the most effective ones in detecting the Manjang Cave and surrounding miscellaneous cavities. Especially, on the inverted resistivity section obtained from the dipole-dipole array data, the two-dimensional distribution of high resistivity cavities are revealed well. The gravity and magnetic data are contaminated easily by various noises and do not show the definitive responses enough to locate and delineate the Manjang cave. But they provide useful information in verifying the dipole-dipole resistivity survey results. The grid-type 2-D magnetic survey data show the trend of cave development well, and it may be used as a reconnaissance regional survey for determining survey lines for further detailed explorations. The GPR data show very sensitive response to the various shallow volcanic structures such as thin spaces between lava flows and small cavities, so we cannot identify the response of the main cave. Although each geophysical method provides its own useful information, the integrated interpretation of multiple survey data is most effective for investigation of the underground caves.

  • PDF

Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data (세종과학기지 주변 영구동토의 활동층에 대한 시간경과 전기비저항자료의 해석: 기상 및 식생 자료와의 연계해석)

  • Kim, Kwansoo;Lee, Joohan;Lee, Eungsang;Ju, Hyeontae;Hyun, Chang-Uk;Park, Sang-Jong;Kim, Ok-Sun;Lee, Sun-Joong;Kim, Ji-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.413-423
    • /
    • 2020
  • Over the wide area, King Sejong Station and the nearby land are uncovered with snow and ice conditions. Therefore, the active layer on the permafrost has been formed to be much thicker than the other Antarctica region. Electrical resistivity survey of Wenner and dipole-dipole arrays was undertaken at a series of time in the freezing season at the King Sejong Station to delineate subsurface structure and to monitor active layer in permafrost terrain. Time-lapse resistivity structures are well in terms of the vegetation distribution, ground surface temperature, and snow depth. Horizontal high resistivity belt(>1826 Ωm) at very shallow depth is thickening with the lapse of time, probably caused by the freezing of the water in the pore spaces with decrease of ground temperature. Subsurface structures for the area of low snow-cover and vegetated zone area are comprised of 0~0.5 m deep high-resistive gravel-rich soil, 0.5~3 m deep low-resistive active layer, and the underlying permafrost. In contrast, the unvegetated area and high snow-buildup is characterized with high resistivities larger than approximately 2000 Ωm due to freezing of the soil throughout the year. Data interpretation and correlation schemes explored in this paper can be applied to confirm the active layer, which is expected to get thinner in additional survey during the thawing season.

ESTIMATING THE VOLUME OF CONSTRUCTION-WASTE LANDFILL USING GEOPHYSICAL TECHNIQUES (물리탐사 기법을 이용한 건축 폐기물 매립지의 규모 파악)

  • Mun,Yun-Seop;Lee,Tae-Jong;Lee,Chae-Yeong;Yun,Jun-Gi
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Dipole-dipole resistivity and ground penetrating radar(GPR) surveys were performed on an abandoned landfill site filled with asbestos containing material. The main purpose of the study was to estimate spatial extension and volume of the landfill for evaluting the cost for developing appropriate remedial alternatives. Assuming that the bedrock is within 10 m depth, dipole spacings of 2, 2.5 and 5m were set for six survey lines for resistivity measurements. For More detailed information, GPR suvey using 225 Mhz antenna was carried out for twelve survey lines for the shallower information. DC resistivity structures showed few tens ~ hundreds ohm-m for the landfill or alluvial laver, and 1,000~ 5,000 ohm-m for the bedrock. The depth to bedrock is found out to be approximately 5m. GPR survey results represented very clear reflection and/or diffraction events from the boundaries as well as from the blocky construction wastes. With high-resolution GPR survey, depth of the bedrock was resolved up to 2m, which in turn, could be a good indicator for estimating the volume of the landfill. Those depths of bedrock were confirmed by backhoe excavation data for 13 sites. The total area and volume of the landfill were to be approximately 3,953 .$m^2$ and 4,033 $m^3$, respectively.

  • PDF

Synthesis, Characterization and ESR Studies of New Copper(II) Complexes of Vicinal Oxime Ligands (Vicinal Oxime 리간드의 새로운 구리(II) 착물에 대한 합성, 특성 및 ESR 연구)

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.603-611
    • /
    • 2011
  • Ethoxylacetyl oxime ligands [HL, (1) and $H_2L^1$, (3)] react with copper(II) acetate monohydrate yield octahedral and square planar complexes, respectively. The complexes have been postulated due to elemental analyses, IR, UVVis. spectra, magnetic susceptibility, conductivity and ESR spectra. Molar conductance of the complexes in DMF indicates a non-ionic character. The ESR spectra of [$(L)_2Cu(H_2O)_2$], (2) complex at room temperature and 77K are characteristic of an axial symmetry ($d_{x2-y2}$) with covalent bond character and have a large line width typical of dipolar interactions. However, [$(L^1)Cu$], (4) complex in the solid state showed spectra of marked broadening and loss of hyperfine splitting confirming spinexchange interactions between the copper(II) sites. The spectrum of the doped copper(II) complex at room temperature showed super-hyperfine splitting from coordinated nitrogen atoms and it has an axial type ($d_{x2-y2}$) with covalent bond character and an essentially square-planar arrangement around the copper(II) ion. The spectrum of [$(L^1)Cu$], (4) in frozen methanol at 77K was characteristic of the triplet state of a dimer species and the distance found between the two copper(II) centers was calculated and is equal to 4.8 ${\AA}$.

Calculation of the Electromagnetic Wave Ields Near Electric Power Lines (전력선로 근방의 전자파 전자계 계산)

  • Kang, Dae-Ha;Lee, Young-Sik;Park, Jung-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • In this study electromagnetic fields near electric power lines were derived by dipole antenna theory and electromagnetic fields near 3 phase power lines with vertical configurations were formulated and could be computed easily using these formula. It seems that those formula could be applicable to the consideration of electromagnetic fields during the design of transmission and distribution lines. Those formulated equations on elements of electromagnetic fields were applied to the model of a transmission-line system and were calculated by Matlab programs. The calculation results are follows. For variation of horizontal distance profiles of $E_y$ and $B_z$ are same each other, and also those of $B_y$ and $E_z$ are same each other. This means that coupled elements of E and B are perpendicular each other and have the propagation direction of the right-hand system such as $x{\rightarrow}E_y{\rightarrow}B_z$. Resultant electric field E is dominated by the element $E_y$ and resultant magnetic field B is dominated by the element $B_z$.

Investigation of Contaminated Waste Disposal Site Using Electrical Resistivity Imaging Technique (폐기물 처분장 오염지반조사를 위한 전기비저항 영상화 기법의 적용)

  • Jung Yunmoon;Woo Ik;Kim Jungho;Cho Seongjun
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The electrical resistivity method, one of old and widely used geophysical prospecting methods, has extended its scope to civil & environmental engineering areas. The electrical resistivity imaging technique was performed at the waste disposal site located in Junju to verify the applicability to the environmental engineering area. The dipole-dipole array, with the dipole spacing of 10 m, was applied along eight survey lines. The field data were obtained under the control of automatic acquisition softwares and topographic effects were corrected during processing stage. The processed resistivity images show that very low resistivity develops inside the disposal site and the distribution of low resistivity is exactly in accord with the boundary of the site except the river side. The depth of low resistivity zones is deeper toward the river side, which is interpreted that there is a high possibility for contaminants to be scattered to the river. From resistivity images, it was feasible to deduce the depth of waste disposal as well as the horizontal/vertical distribution of the contaminated zone, which proved the applicability of the electrical resistivity imaging technique to the environmental engineering area.

  • PDF

Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity (탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사)

  • Kim, Namsun;Lee, Jong-Sub;Kim, Ki-Seog;Kim, Sang Yeob;Park, Junghee
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.49-60
    • /
    • 2022
  • Underground urbanization appears to be a promising solution in response to the shortage of construction sites in the above-ground space. In this context, an accurate evaluation of a construction site ensures the long-term performance of geosystems. This study characterizes potential sites for complex plants built in underground space using geophysical methods (i.e., seismic refraction exploration and electrical resistivity survey) and in situ tests (i.e., standard penetration tests (SPTs) and downhole tests). SPTs are conducted in nine boreholes BH-1-BH-9 to estimate the groundwater level and vertical distribution of geological structures. The seismic refraction method enables us to obtain the elastic wave velocity and thickness of each soil layer for each cross-sectional area. An electrical resistivity survey conducted using the dipole array method provides the electrical resistivity profiles of the cross-sectional area. Data obtained using geophysical techniques are used to assess the classification of the soil layer and bedrock, particularly the fracture zone. This study suggests that geotechnical information using in situ tests and geophysical methods are useful references to design an underground complex plant construction.