Browse > Article
http://dx.doi.org/10.9719/EEG.2020.53.4.413

Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data  

Kim, Kwansoo (Korea Polar Research Institute)
Lee, Joohan (Korea Polar Research Institute)
Lee, Eungsang (Dept. of Astronomy, Space Science and Geology, Chungnam National Univ.)
Ju, Hyeontae (Korea Polar Research Institute)
Hyun, Chang-Uk (Korea Polar Research Institute)
Park, Sang-Jong (Korea Polar Research Institute)
Kim, Ok-Sun (Korea Polar Research Institute)
Lee, Sun-Joong (Dept. of Earth and Environmental Sciences, Chungbuk National Univ.)
Kim, Ji-Soo (Dept. of Earth and Environmental Sciences, Chungbuk National Univ.)
Publication Information
Economic and Environmental Geology / v.53, no.4, 2020 , pp. 413-423 More about this Journal
Abstract
Over the wide area, King Sejong Station and the nearby land are uncovered with snow and ice conditions. Therefore, the active layer on the permafrost has been formed to be much thicker than the other Antarctica region. Electrical resistivity survey of Wenner and dipole-dipole arrays was undertaken at a series of time in the freezing season at the King Sejong Station to delineate subsurface structure and to monitor active layer in permafrost terrain. Time-lapse resistivity structures are well in terms of the vegetation distribution, ground surface temperature, and snow depth. Horizontal high resistivity belt(>1826 Ωm) at very shallow depth is thickening with the lapse of time, probably caused by the freezing of the water in the pore spaces with decrease of ground temperature. Subsurface structures for the area of low snow-cover and vegetated zone area are comprised of 0~0.5 m deep high-resistive gravel-rich soil, 0.5~3 m deep low-resistive active layer, and the underlying permafrost. In contrast, the unvegetated area and high snow-buildup is characterized with high resistivities larger than approximately 2000 Ωm due to freezing of the soil throughout the year. Data interpretation and correlation schemes explored in this paper can be applied to confirm the active layer, which is expected to get thinner in additional survey during the thawing season.
Keywords
time-lapse electrical resistivity; active layer; permafrost; King Sejong Station; ground temperature;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahn, T.G., Ko, C.H., Jeong, Y.J., Lee, H,S., Song, S.H. and Yong, H.H. (2015) An electrical resistivity monitoring in embankment, Journal of the Korean Earth Science Society, v.36, no.1, p.59-67.   DOI
2 Archie, G.E. (1942) The electrical resistivity log as an aid to determining some reservior characteristics, Transactions of the American Institute of Mining, Metallurgical and Petroluem Engineers, v.146, p.389-409.
3 Dafflon, B., Hubbard, S, Ulrich, C., Peterson, J., Wu, Y, Wainwright, H. and Kneafsey, T.J. (2016) Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region, Geophysics, v.81, no.1, p.247-263.
4 Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A.P., Romanocsky, V. and Hubbard, S. (2017) Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra, Journal of Geophysical Research: Biogeosciences, v.122, p.1321-1342.   DOI
5 Diprowin. (2000) Electrical resistivity processing program, Heesong Ltd, Korea.
6 Du, E., Zhao, L., Wu, T., Li, R., Yue, G., Wu, X., Li, W., Jiao, Y., Hu, G., Qiao, Y., Wang, Z., Zou, D. and Liu, G. (2016) The relationship between the ground surface layer permittivity and active-layer thawing depth in a Qinghai-Tibetan Plateau permafrost area, Cold Regions Science and Technology, v.126, p.55-60.   DOI
7 Elchin, J. and Kevin, S. (2016) The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics, The Cryosphere, v.10, p.465-475.   DOI
8 Fawcett, D., Panigada, C., Tagliabue, G., Boschetti, M., Celesti, M., Evdokimov, A., Biriukova, K., Colombo, R., Miglietta, F., Rascher, U. and Anderson, K. (2020) Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sensing, v.12, p.514.   DOI
9 Han, U. and Jung, H.C. (1994) Temperature response in the permafrost at the Sejong Station, Antarctica, Journal of the Korean Earth Science Society, v.15, p.170-176.
10 Briggs, M.A., Campbell, S., Nolan, J., Walvoord, M.A., Ntarlagiannis, D., Day-Lewis, F.D. and Lane, J.W. (2017) Surface geophysical methods for characteristic frozen ground in transitional permafrost landscapes, Permafrost and Periglacial Process, v.28, no.1, p.52-65.   DOI
11 Jeon, W.H., Lee, J.Y., Lim, H.S. and Yoon, H.I. (2016) Comparison of thermal characteristics of soil in austral summer and winter at King Sejong Station, King George Island, Antarctica, Journal of the Geological Society of Korea, v.52, no.6, p.901-915.   DOI
12 Harrison, W.D. (1991) Permafrost response to surface temperature change and its implications for 40,000 year surface temperature history at Prudhoe Bay, Alaska, Journal of Geophysical Research, v.96, p.683-695.   DOI
13 Hughes, K. A., Ireland, L. C., Convey, P. and Fleming, A. H. (2016). Assessing the effectiveness of specially protected areas for conservation of Antarctica's botanical diversity. Conservation Biology, v.30, p.113-120.   DOI
14 Hubbard, S.S., Gangodagamage, C., Dafflon, B., Wainwright. H., Petersen. J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J., Tweedie, C. and Wullschleger, S. D. (2012) Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets, Hydrogeology of Cold Regions, v.21, p.149-169.
15 Jeong, W.W. and Kim, M.H. (2019) Determination of leak zone of reservoir embankment by electrical resistivity survey and drilling survey, Journal of the Korean Society for Environmental Technology, v.20, no.3, p.204-212.   DOI
16 Ji, Y.S. and Oh, S.H. (2015) Integrated analysis of electrical resistivity monitoring and geotechnical data for soft ground, Journal of Korean Earth Science Society, v.36, p.16-26.   DOI
17 Kim, H.S., Lee, K.H. and Hahn, J.S. (1995) Electrical surveys for mapping leachate in Nanji-Do landfill site, The Journal of Engineering Geology, v.5, no.3, p.259-276.
18 Harris, C., Arenson, L.U., Christiansen, H.H., Etzelmuller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Holzle. M., Humlum, O., Isaksen, K., Kaab, A., Kern-Lutschg, M.A., Lehning, M., Matsuoka, N., Murton, J.B., Notzli, J., Phillips, M., Ross, N., Seppala, M., Springman, S.M. and Muhll, D.V. (2009) Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Science Reviews, v.92, p.117-171.   DOI
19 Kneisel, C. (2004) New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2D resistivity imaging, Permafrost and Periglacial Processes, v.15, p.221-227.   DOI
20 Kim, H.S. and Lee, K.H. (1993) Interactive interpretation methods for one-dimensional Schlumberger electrical sounding and magnetotelluric data, Journal of Geology Society Korea, v.29, no.5, p.493-506.
21 Kim, H.S., Nam, S.H. and Kim, Y.D. (1996) Near-surface geophysical surveys using seismic and electric methods in Barton Peninsula of King George Island, Antarctica, Journal of the Geological Society of Korea, v.32, no.2, p.131-145.
22 Kim, J.H., Yi, M.J., Song, Y.H. and Chung, S.H. (2001) A comparison of electrode arrays in two-dimensional resistivity survey, Journal of Korean Institute of Mineral and Energy Resources Engineers,, v.38, no.2, p.116-128.
23 Jin, M.S., Lee, M.S., Kang, P.C. and Jwa, Y.J. (1991) Petrology and geochemistry of the volcano plutonic rocks in Barton and Weaver Peninsula, King George Island, Antarctica, Korean Journal of Polar Research, v.2, no.1, p.107-134.
24 Kim, J.S., Song, Y.S., Yoon, W.J., Cho, I.K., Kim, H.S. and Nam, M.J. (2014) Application of New Geophysical Techniques(2nd edition): Principle of new technologies and case studies, Sigma Press, 729p.
25 Kim, Y.D. and Lee, H.W. (1991) A gravity model of geological structure in Barton Peninsula, King George Island, Korean Journal of Polar Research, v.2, no.2, p.87-100.
26 Kwon, B.D. and Jwa, Y.J. (1991) Magnetic investigation of the Barton Peninsula, King George Island, The research on natural environments and resources of Antarctica, Korea Ocean Research and Development Institute, BSPG00140-400-7, p.67-90.
27 Schnur, M.T., Xie, H. and Wang, X. (2010) Estimating root zone soil moisture at distant using MODIS NDVI and EVI in a semi-arid region of southwestern USA, Ecological Informatics, v.5, p.400-409.   DOI
28 Osterkamp, T. E. and Burn. C. R. (2003) Permafrost Encyclopedia of Atmospheric Sciences 1st edn, ed J R Holton, J Pyle and J A Curry (Oxford: Academic), p.1717-1729.
29 Park, S.J., Choi, T.J., Lee, B.Y. and Kim S.J. (2019) 30-Year Climatology Observed at King Sejong Station, Antarctica, XIII International Symposium on Antarctic Earth Sciences, A281.
30 Rouse Jr, J. W., Haas, R. H., Schell, J.A. and Deering, D. W. (1974) Monitoring Vegetation System in the Great Plains with ERTS, Presented at Third Earth Resources Technology Satellite-1 Symposium, NASA, Washington, D.C, p.309-317
31 Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1990) Applied Geophysics (2ed edition), Cambridge University Press, Cambridge, UK. 792p.
32 Tominaga, Y., Mochida, A., Okaze, T., Sato, T., Nemoto, M., Motoyoshi, H., Nakai, S., Tsutsumi, T., Otsuki, M., Uamatsu, T. and Yoshino, H. (2011) Development of a system for predicting snow distribution in builtup environments: Combining a mesoscale meteorological model and a CFD model, Journal of Wind Engineering and Industrial Aerodynamics, v.99, no.4, p.460-468.   DOI
33 Turner, D., Lucieer, A., Malenovsky, Z., King, D. H. and Robinson, S. A. (2014) Spatial co-registration of ultrahigh resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sensing, v.6, p.4003-4024.   DOI
34 Lim, S.K. (2018) Analysis of a weak zone in embankment close to a drainage using resistivity monitoring data, Geophysics and Geophysical Exploration, v.21, no.1, p.8-14.   DOI
35 Westermann, S., Wollschlager, U. and Boike, J. (2010) Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel groundpenetrating radar, The Cryosphere, v.4, p.475-487.   DOI