DOI QR코드

DOI QR Code

Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity

탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사

  • Kim, Namsun (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Kim, Ki-Seog (Heesong Geotek co., Ltd.) ;
  • Kim, Sang Yeob (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Park, Junghee (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 김남선 (고려대학교 건축사회환경공학과) ;
  • 이종섭 (고려대학교 건축사회환경공학부) ;
  • 김기석 (희송지오텍) ;
  • 김상엽 (고려대학교 건축사회환경공학부) ;
  • 박정희 (고려대학교 건축사회환경공학부)
  • Received : 2022.08.30
  • Accepted : 2022.09.05
  • Published : 2022.10.31

Abstract

Underground urbanization appears to be a promising solution in response to the shortage of construction sites in the above-ground space. In this context, an accurate evaluation of a construction site ensures the long-term performance of geosystems. This study characterizes potential sites for complex plants built in underground space using geophysical methods (i.e., seismic refraction exploration and electrical resistivity survey) and in situ tests (i.e., standard penetration tests (SPTs) and downhole tests). SPTs are conducted in nine boreholes BH-1-BH-9 to estimate the groundwater level and vertical distribution of geological structures. The seismic refraction method enables us to obtain the elastic wave velocity and thickness of each soil layer for each cross-sectional area. An electrical resistivity survey conducted using the dipole array method provides the electrical resistivity profiles of the cross-sectional area. Data obtained using geophysical techniques are used to assess the classification of the soil layer and bedrock, particularly the fracture zone. This study suggests that geotechnical information using in situ tests and geophysical methods are useful references to design an underground complex plant construction.

지상공간의 건설부지 부족 현상으로 인한 도심지 지하화가 진행되고 있으며, 이에 따른 건설부지의 정확한 지반특성 평가가 요구되고 있다. 본 논문에서는 지하공간을 활용한 복합플랜트 후보부지에 대한 지반특성 파악하고자 시추조사와 다양한 물리탐사 방법 중 지표 탐사인 탄성파 굴절법 탐사와 전기비저항 탐사를 수행하였다. 시추조사는 BH-1 ~ BH-9까지 총 9개 시추공에서 수행하였으며, 일정한 간격을 유지하여 각 공에서의 지하수위 및 지질구조의 수직분포 등에 대한 정보를 획득하였다. 탄성파 굴절법 탐사에서 각 지층의 구간별 속도 및 지층 두께를 측정하였으며, 전기비저항 탐사는 쌍극자 배열법을 이용하여 지층의 전기비저항 분포를 파악하였다. 시추조사 결과를 종합하여 대상지반의 토사층 분류 및 기반암선을 파악하였으며, 물리탐사 결과를 통해 파쇄대와 같은 이상대를 평가하였다. 본 논문은 시추조사와 물리탐사 기법을 활용하여 지하복합 플랜트 후보부지에 대한 지반특성 파악하였고, 향후 시추조사와 물리탐사를 병행하는 지반조사에 참고 자료로 쓰일 수 잇다는 점에서 의의가 있다.

Keywords

Acknowledgement

본 연구는 국토교통부 국토교통과학기술진흥원 '지하공간 활용 도시기반 복합플랜트 실증연구 사업'의 "환경기초 복합플랜트 지하공간 활용 기술(과제번호: 22UGCPB157945-03)" 과제에 의해 수행되었으며 이에 감사드립니다.

References

  1. Archie, G. E. (1942), The Electrical Resistivity Log as an Aid in Determining Some Reservoir Dharacteristics, Transactions of the AIME, Vol.146, No.01, pp.54-62. https://doi.org/10.2118/942054-G
  2. ASTM, D422 (2007), Standard Test Method for Particle-size Analysis of Soils, The American Society for Testing and Materials, West Conshohocken, United States.
  3. Bang, E. S., Kim, Y. S., Park, S. G., and Kim, D. S. (2012), Application of Resistivity Seismic Flat Dilatometer (RSDMT) System for Multiple Evaluation of the Soft Soil Site, Journal of the Korean Geotechnical Society, Vol.28, No.12, pp.111-122. https://doi.org/10.7843/KGS.2012.28.12.111
  4. Barker, R. D. (1979), Signal Contribution Sections and their Use in Resistivity Studies, Geophysical Journal International, Vol.59, No.1, pp.123-129. https://doi.org/10.1111/j.1365-246X.1979.tb02555.x
  5. Cho, I. K. (2020), Recent Trend in Electrical Resistivity Method, Journal of The Korean Society of Mineral and Energy Resources Engineers, Vol.57, No.5, pp.506-526. https://doi.org/10.32390/ksmer.2020.57.5.506
  6. D ahlin, T. and Zhou, B. (2004), A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays, Geophysical prospecting, Vol.52, No.5, pp.379-398. https://doi.org/10.1111/j.1365-2478.2004.00423.x
  7. Hamm, S. Y., Kim, H. S., Cheong, J. Y., Jang, S., Cha, Y. H., and Ryu, S. H. (2003), Hydrogeological characteristics of Iryong area in Haman-Gun for developing bank-filtrated water. In Proceedings of the KSEG Conference (pp.159-163), The Korean Society of Engineering Geology.
  8. Ji, Y., Kim, H. S., Lee, M. G., Cho, H. I., and Sun, C. G. (2021), MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea, Journal of the Korean Geotechnical Society, Vol.37, No.5, pp.47-63. https://doi.org/10.7843/KGS.2021.37.5.47
  9. Kearey, P., Brooks, M., and Hill, I. (2002), An Introduction to Geophysical Exploration (Vol.4), John Wiley & Sons.
  10. Kim, H.S., Baek, G.H., Lee, D.K., and Oh, S.H. (2002), Elastic Wave Survey at Alluvial Aquifer Filtered Water-intake Area in Changwon, Proceedings of KSSGE 2003 Fall Conference, pp.269-272 (in Korean).
  11. Kim, H. S., Kim, H. K., Shin, S. Y., and Chung, C. K. (2012). Application of Statistical Geo-spatial Information Technology to Soil Stratification in the Seoul Metropolitan area, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, Vol.6, No.4, pp.221-228. https://doi.org/10.1080/17499518.2012.744248
  12. Kim, H.S., Seo, M.C., Lee, C.W., and Jin, S.H. (2003), High Resolution Site-investigation for Alluvial Aquifer by Using Geophysical and Elastic Wave Methods and GPR Survey Near the Geum River in Buyeo, Proceedings of KSSGE 2003 Spring Conference, pp.287-291 (in Korean).
  13. KSF 2307 (2020), Standard Test Method for Standard Penetration Test, Korean Industrial Standards.
  14. Lee, B., Hwang, B., and Cho, W. (2017), Reliability Evaluation Methodology of Boring Investigation DB for the 3D Integrated Underground Space Map, Journal of the Korean Geotechnical Society, Vol.33, No.9, pp.35-47. https://doi.org/10.7843/KGS.2017.33.9.35
  15. Lee, D. S. (2005), Seismic Refraction Analysis to Estimate the Depth to the Bedrock: Case Study, Geophysics and Geophysical Exploration, Vol.8, No.4, pp.237-242.
  16. Loke, M. H., Wilkinson, P. B., and Chambers, J. E. (2010), Fast Computation of Optimized Electrode Arrays for 2D Resistivity Surveys, Computers & Geosciences, Vol.36, No.11, pp.1414-1426. https://doi.org/10.1016/j.cageo.2010.03.016
  17. Oh, S. H. and Sun, C. G. (2004), Analysis of Geophysical and Geotechnical SPT Data for the Safety Evaluation of Fill Dam, Journal of the Korean Geophysical Society, Vol.7, No.3, pp.171-183.
  18. Park, C. H., Won, K. S., Byun, J. H., Min, D. H., and Yoon, H. K. (2013), The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR, Journal of the Korean Geotechnical Society, Vol.29, No.9, pp.17-29. https://doi.org/10.7843/KGS.2013.29.9.17
  19. Szalai, S. and Szarka, L. (2008), On the Classification of Surface Geoelectric Arrays, Geophysical Prospecting, Vol.56, No.2, pp.159-175. https://doi.org/10.1111/j.1365-2478.2007.00673.x
  20. Sun, C. G., Kim, H. J., Jung, J. H., and Jung, G. J. (2006), Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits, Geophysics and Geophysical Exploration, Vol.9, No.3, pp.207-224.
  21. Yoo, J. K., Chang, J., Park, D. H., and Sagong, M. (2014), Evaluation of Effect of Rock Joints on Seismic Response of Tunnels.
  22. You, Y. J., Kim, J. N., and Yoo, I. K. (2005), Industry-University-Research Collaborative Geoscientific Study in Pocheon Area for Groundwater Survey, Part III: Resistivity Technology, Proceedings of Geophysics and Physics Exploration, pp.129-136.