• Title/Summary/Keyword: 싱크 노드

Search Result 377, Processing Time 0.03 seconds

Routing protocol Analysis for Minimum delay Between Hierarchical node in Low Power Sensor Network (저 전력 센서 네트워크에서의 계층 노드 간 지연 감소를 위한 라우팅 프로토콜 분석)

  • Kim, Dong Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1721-1726
    • /
    • 2014
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on sensor network is proceeding actively which is composed many different sensor node. The major traffic patterns of plenty of sensor networks are composed of collecting types of single directional data, which is transmitting packets from several sensor nodes to sink node. One of the important condition for design of sensor node is to extend for network life which is to minimize power-consumption under the limited resources of sensor network. In this paper analysis used routing protocols using the network simulation that was used second level cluster structure to reduce delay and power-consumption of sensor node.

A Hierarchical Data Dissemination Protocol in Large-Scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 계층적 데이터 전달 프로토콜)

  • Chu, Seong-Eun;Kang, Dae-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1505-1510
    • /
    • 2008
  • In large-scale wireless sensor networks, the deployed nodes cannot be replaced or recharged after first deployment. Also, dead nodes maγ lead to the partition of whole networks. While performing data dissemination under a battery power constraint, energy efficiency is a key design factor of routing protocol. As a solution for the efficient data dissemination, in this paper, we propose a protocol namely Hierarchical Data Dissemination (HDD) which provides scalable and efficient data delivery to multiple sources and mobile sinks. HDD uses the facts that sink nodes are central gathering Points and source-centric data forwarding paths are constructed and it is maintained with two-tier communications. The performance of HDD is compared with TTDD about the energy consumption, data delivery time and data success ration. The extensive simulation results show that HDD Routing Protocol outperforms TIDD by more than $1.5{\sim}3times$ on energy consumption.

Retransmission with Transmission Quantity Allocation for Energy Harvesting Wireless Sensor Networks

  • Gun-Hee Kim;Ikjune Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.175-182
    • /
    • 2024
  • In wireless sensor networks, batteries limit lifespan, and heavy data transmission around the sink causes the hotspot problem. To address this, data collection amounts are allocated to child nodes to limit transmission. However, this approach has issues with nodes far from the sink having excessive energy and failing to transmit the allocated amount due to data transmission errors. This paper proposes a method to prevent sensor data loss through error recovery via retransmission. The method ensures that each node's retransmission volume stays within its allocated data amount and energy limits, using excess energy for error recovery. Simulations show that this technique effectively recovers data transmission errors, collects data, minimizes energy depletion around the sink, and increases data collection rates.

Routing protocol Analysis for Minimum delay Between Hierarchical node in USN (USN에서의 계층 노드 간 지연 감소를 위한 라우팅 프로토콜 분석)

  • Kim, Dong-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.733-736
    • /
    • 2013
  • The sensor network technology for core technology of ubiquitous computing is in the spotlight recently, the research on sensor network is proceeding actively which is composed many different sensor node. The major traffic patterns of plenty of sensor networks are composed of collecting types of single directional data, which is transmitting packets from several sensor nodes to sink node. One of the important condition for design of sensor node is to extend for network life which is to minimize power-consumption under the limited resources of sensor network. In this paper analysis used routing protocols using the network simulation that was used second level cluster structure to reduce delay and power-consumption of sensor node.

  • PDF

An Operation Scheme of Local Sink in Geographic Routing for Wireless Sensor Networks (무선 센서 네트워크를 위한 위치 기반 라우팅에서 로컬 싱크 운영 기법)

  • Lee, Eui-Sin;Park, Soo-Chang;Jin, Min-Sook;Park, Ho-Sung;Kim, Tae-Hee;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • This paper addresses issues to efficiently collect and aggregate data of sources within a local and adjacent region in geographic routing for wireless sensor networks. We first introduce the concept of a local sink which collects and aggregates data form source nodes in the region and delivers the aggregated data to a global sink. We also design a model to determine an optimal location of the local sink and propose a mechanism to collect data through the local sink. Simulation results show that the proposed mechanism with the local sink is more efficient in terms of the energy and the data delivery ratio than the existing mechanism without the local sink in a geographic routing.

Communication Protocol to Support Mobile Sinks by Multi-hop Clusters in Wireless Sensor Networks (무선 센서 네트워크에서 멀티-홉 클러스터를 통한 이동 싱크 지원 통신 프로토콜)

  • Oh, Seung-Min;Jung, Ju-Hyun;Lee, Jeong-Cheol;Park, Ho-Sung;Yim, Yong-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • In wireless sensor networks(WSNs), the studies that support sink mobility without global position information exploit a Backbone-based Virtual Infrastructure (BVI) which considers one-hop clusters and a backbone-based tree. Since the clusters of a sink and a source node are connected via flooding into the infrastructure, it causes high routing cost. Although the network could reduce the number of clusters via multi-level clusters, if the source nodes exist at nearest clusters from the cluster attached by the sink and they are in different branches of the tree, the data should be delivered via detour paths on the tree. Therefore, to reduce the number of clusters, we propose a novel multi-hop cluster based communication protocol supporting sink mobility without global position information. We exploit a rendezvous cluster head for sink location service and data dissemination but the proposed protocol effectively reduces data detour via comparing cluster hops from the source. Simulation shows that the proposed protocol is superior to the existing protocols in terms of the data delivery hop counts.

A Study on the Link Cost Estimation for Data Reliability in Wireless Sensor Network (무선 센서 네트워크에서 데이터 신뢰성을 위한 링크 비용 산출 방안에 관한 연구)

  • Lee, Dae-hee;Cho, Kyoung-woo;Kang, Chul-gyu;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.571-573
    • /
    • 2018
  • Wireless sensor networks have unbalanced energy consumption due to the convergence structure in which data is concentrated to sink nodes. To solve this problem, in the previous research, the relay node was placed between the source node and the sink node to merge the data before being concentrated to the sink node. However, selecting a relay node that does not consider the link quality causes packet loss according to the link quality of the reconfigured routing path. Therefore, in this paper, we propose a link cost calculation method for data reliability in routing path reconfiguration for relay node selection. We propose a link cost estimation formula considering the number of hops and RSSI as the routing metric value and select the RSSI threshold value through the packet transmission experiment between the sensor modules.

  • PDF

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

ECS : Energy efficient Cluster-head Selection algorithm in Wireless Sensor Network (무선 센서 네트워크에서의 에너지 효율적인 클러스터 헤드 선출 알고리즘)

  • Choi, Koung-Jin;Yun, Myung-Jun;Sim, In-Bo;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.342-349
    • /
    • 2007
  • Clustering protocol of Wireless sensor networks(WSNs) not only reducing the volume of inter-node communication by the nodes's data aggreation but also extending the nodes's sleep times by cluster head's TDMA-schedule coordination. In order to extend network lifetime of WSNs, we propose ECS algorithm to select cluster-head using three variables. It consists of initial and current energy of nodes, round information and total numbers which have been selected as cluster head until current round.

Efficient Cluster Head Selection Technique (효율적인 클러스터 헤드 선출기법)

  • Park Soomin;Nam Choonsung;Kim Kyeongmin;Shin Yongtae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.496-498
    • /
    • 2005
  • 수많은 센서들로 이루어진 센서 네트워크에서는 노드의 제한된 에너지로 인해, 에너지 효율적 사용이 중요한 이슈이다. 따라서 에너지 효율적인 라우팅을 위하여 많은 알고리즘이 연구되고 있다. 이들 알고리즘들 중 클러스터링 기법은 센서 노드가 싱크와 직접 통신하는 방법이 아닌 클러스터 헤드로 선출된 노드와 통신하여 클러스터 헤드가 센싱된 정보를 모아 싱크에 보냄으로써 에너지 소비를 줄이게 된다. 이 기법은 클러스터 헤드 선정이 무엇보다도 중요한 이슈이다. 따라서 이 논문에서는 잔존 에너지의 양과 노드의 상대적 위치에 따라 클러스터 헤드를 선출함으로써 에너지 효율을 최적화 시킬 수 있는 기법을 제안한다.

  • PDF