• Title/Summary/Keyword: 실트

Search Result 483, Processing Time 0.023 seconds

Evaluation of Artificial Recharge Characteristics by using the Methods of Ditch and Injection well (Ditch상 인공주입방식을 이용한 인공함양 및 주입량 평가 연구)

  • Lee, Young Dong;Shin, Dong Min;Kim, Byeong Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.25-25
    • /
    • 2020
  • 최근 기후변화와 함께 한국은 매년 가뭄이 지속적으로 발생하고 있으며 피해지역도 다양하게 나타나고 있다. 이에, 가뭄에 능동적으로 대처하고, 지하수자원을 확보할 수 있는 인공함양 및 취수시설의 실증시설을 구축하여 상시 가뭄지역을 대상으로 적용하고자 한다. 최종적으로 연구지역의 소규모 평탄지 하천 중·상류지역 충적층에 인공함양을 통해 가뭄대책 마련을 위한 인공 주입시설을 설치하고, 대수층 발달이 양호한 하류지역에 수평집수정을 이용한 취수시설을 설치하여 취수-공급의 지속적인 순환방식의 통합적인 인공주입·취수시스템을 구축하고자 한다. 연구지역은 가뭄 및 상수도 미 보급지역으로 인해 제한급수가 이루어지고 있는 충청남도 홍성군 운곡리 지역을 대상으로 하였으며, 연구지역 주 대수층인 충적층은 시추조사 결과 지표하 0.5~12.3m에 분포하며, 실트질 모래 및 실트질 자갈로 구성되어있다. 대수층의 수리성은 양수 및 회복시험결과 3.79×10-4~7.71×10-3(평균 3.13×10-3)cm/sec로 인공함양을 위한 지반 특성으로 양호한 수리특성을 보인다. 본 연구에서는 연구지역의 지층분포 및 수리지질특성을 고려하여 현장시험 대수층에 인공함양 방법 중 Ditch 및 Ditch+injection Well을 설치하고 공경, 여재등 여러인자에 따른 인공 주입에 의한 함양특성과 수위변동 모니터링을 분석하였으며, 분석결과를 토대로 향후 최적의 취수시설을 구축하여 국내 상시 가뭄지역의 대체수자원확보와 용수공급 방안으로 활용할 수 있을 것으로 판단된다.

  • PDF

Development of a non-destructive soil moisture sensor using contactless ultrasonic systems (비접촉 초음파를 이용한 비교란, 비접촉 토양수분 센서 개발)

  • Woo, Dong Kook;Do, Wonseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.24-24
    • /
    • 2022
  • 토양 수분은 육상 생태계를 지배하는 핵심 변수로 널리 간주되어 왔다. 따라서 토양 수분을 모니터링하고 추정하는 것은 수문, 농업, 생화학적, 및 기후 역학을 평가하는 데 필수적이다. 그러나 최대 토양 접촉을 요구하는 기존의 토양 수분 모니터링 방법은, 토양 교란을 최소화하여 토양의 고유 특성을 보전하지 못하는 한계가 있다. 이 문제를 극복하기 위해 본 연구에서는 비접촉 초음파 시스템을 이용하여 토양 수분을 평가 방법을 개발하였다. 이 시스템은 공기-토양 조인트 절반 공간에서 누설 레일리파(Rayleigh wave)를 측정하도록 설계되었다. 토양 수분의 변화에 대한 누설 레일리파의 측정은 통제된 실험 설계에서 모래, 실트, 점토와 같은 세 가지 토양 유형에서 평가하였다. 본 연구 결과에서 세 가지 토양 사례 모두, 누설 레일리파의 에너지와 토양 수분 사이에 밀접한 관계가 있음을 보였다. 그러나 모래에서 얻은 동적 매개변수의 특성은 실트 및 점토의 특성과 다른 형태를 보였다. 이러한 결과는 미세한 토양 입자와 대조적으로 굵은 토양 입자는 증발 과정에서 감소된 토양 강도로 설명될 수 있다. 관측된 누설 레일리파에서 얻은 동적 매개변수를 기반으로 토양 수분을 평가하기 위해 랜덤 포레스트 모형을 이용하였다. 예측된 토양 수분의 정확도는 모든 데이터 및 토양 유형에 관계없이 높은 정확도를 보였다(R2 ≥ 0.98, RMSE ≤ 0.0089 m3 m-3). 즉, 본 연구에서는 레일리파가 토양 교란 없이 토양 수분 변화를 지속적으로 평가할 수 있는 큰 잠재력을 가지고 있음을 보여주었다.

  • PDF

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Characteristics of Flow and Sedimentation around the Embankment (방조제 부근에서의 흐름과 퇴적환경의 특성)

  • Lee Moon Ock;Park Il Heum;Lee Yeon Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.37-55
    • /
    • 2000
  • Two-dimensional numerical experiments and field surveys have been conducted to clarify some environmental variations in the flow and sedimentation in the adjacent seas after the construction of a tidal embankment. Velocities of flow and water levels in the bay decreased after the construction of the barrage. When the freshwater was instantly released into the bay, the conditions of flow were unaltered, with the exception of a minor variation in velocities and tidal levels around the sluices at the ebb flow. The computational results showed that freshwater released at the low water reached the outside of the bay and then returned to the inside with the tidal currents at the high water. The front sea regions of the embankment had a variety of sedimentary phases such as a clayish silt, a silty clay and a sandy clayish silt. However, a clayish silt was prevalent in the middle of the bay. On the other hand, the skewness, which reflects the behaviour of sediments, was $\{pm}0.1$ at the front regions of the embankment while it was more than ±0.3 in the middle of the bay. Analytical results of drilling samples acquired from the front of the sluice gates showed that the lower part of the sediments consists of very fine silty or clayish grains. The upper surface layer consisted of shellfish, such as oyster or barnacle with a thickness of 40~50 cm. Therefore, it seemed that the lower part of the sediments would have been one of intertidal zones prior to the embankment construction while the upper shellfish layer would have been debris of shellfish farms formed in the adjacent seas after the construction of the embankment. This shows the difference of sedimentary phases reflected the influence of a tidal embankment construction.

  • PDF

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Fluid-mud deposits in the Early Cretaceous McMurray Formation, Alberta, Canada (캐나다 앨버타주 전기 백악기 맥머레이층의 유성이토 퇴적층)

  • Oh, Juhyeon;Jo, Hyung Rae
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.477-488
    • /
    • 2018
  • Fluid muds commonly occur in estuarine environments, but their ancient examples have rarely been studied in terms of depositional characteristics and processes. Cores of estuarine channel deposits of the Early Cretaceous McMurray Formation, Alberta, Canada show various mudstone layers that possess depositional characteristics of high clay-concentration flows. These mudstone layers are examined in detail through microscopic observation of thin sections and classified into three microfacies (<1 to 25 mm thick) on the basis of sedimentary texture and structures. Structureless mudstone (Microfacies 1) consists mainly of clay particles and contains randomly dispersed coarser grains (coarse silt to fine sand). This microfacies is interpreted as being deposited by cohesive mud flows, i.e., fluid muds, which possessed sufficient strength to support suspended coarser grains (quasi-laminar plug flow). Silt-streaked mudstone (Microfacies 2) mainly comprises mudstone with dispersed coarse grains and includes very thin, discontinuous silt streaks of coarse-silt to very-fine-sand grains. The texture similar to Microfacies 1 indicates that Microfacies 2 was also deposited by cohesive fluid muds. The silt streaks are, however, suggestive of the presence of intermittent weak turbulence under the plug (upper transitional plug flow). Heterolithic laminated mudstone (Microfacies 3) is characterized by alternation of relatively thick silt laminae and much thinner clay laminae. It is either parallel-laminated or low-angle cross-laminated, occasionally showing low-amplitude ripple forms. The heterolithic laminae are interpreted as the results of shear sorting in the basal turbulent zone under a cohesive plug. They may represent low-amplitude bed-waves formed under lower transitional plug flows. These three microfacies reflect a range of flow phases of fluid muds, which change with flow velocities and suspended mud concentrations. The results of this study provide important knowledge to recognize fluid-mud deposits in ancient sequences and to better understand depositional processes of mudstones.

Effect of Average and Cyclic Shear Stress on Undrained Cyclic Behavior of Marine Silty Sand (해양 실트질 모래의 비배수 동적 거동에 대한 평균 및 반복전단응력의 영향)

  • Muhammad, Safdar;Son, Su-Won;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • Offshore wind turbine foundations are subjected to wind, current and wave loadings. Hence, both static and cyclic behaviors of foundation's soil are important for the design of offshore wind turbine foundation. Undrained cyclic behaviors of soils depend upon the number of loading cycles, vertical effective stress, cyclic shear strain, relative density, and the combination of cyclic and average shear stresses. In order to evaluate the effect of average and cyclic shear stresses on the undrained cyclic behavior of marine silty sand, cyclic direct simple shear (CDSS) tests are performed with relative density of 85%, vertical effective stress of 200 and 300 kPa, and failure criteria of either 15% double amplitude cyclic shear strain (${\gamma}_{cyc}$) or permanent shear strain (${\gamma}_{p}$). The results are presented in the form of design graphs or contour diagrams. The undrained cyclic behavior of marine silty sand is found to be dependent on cyclic and average shear stresses and/or the combination of both shear stresses. It is found that when significant average shear stress exists the permanent or progressive shear strain is the govering failure criteria instead of cyclic shear strain.

A Study on Replacement Depth in Soft Soil with Inter Sand Layer (중간 모래층이 있는 연약지반내 제방하부 강제치환 깊이 산정에 관한 연구)

  • Chung, Hyung-Sik;Bang, Chang-Kug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.4
    • /
    • pp.61-71
    • /
    • 2003
  • On the soft soil consisted of silty clay, the compulsion replacement method is useful for revetment and its safety is very much affected by compulsion replacement depth. Usual method calculating the compulsion replacement depth on silty clay is considered the bearing capacity of soft soil with undrained shear strength increase from ground surface and weight of revetment. But according to soil deposit, there are some cases of soft soil with inter sand layer or clayed silt, which affect the compulsion replacement depth. In this paper, the compulsion replacement depth on soft soil with inter sand layer is analyzed by layered weighted average bearing capacity considering influence effect of Perloff et al.(1967) and compared with numerical method(FLAC). In the result, the calculated depth from numerical method is nearest to layered weighted average bearing capacity in case that contact width under revetment is $0.2B_o$(soft soil with inter sand layer), $0.5B_o$(only soft soil) and the effect of contact width under revetment is less than undrained shear strength, thickness and location of inter sand layer. Also the compulsion replacement depth is as much as the inter sand thickness($d_2/B_o$) is thinner, the inter sand layer location($d_1/B_o$) is farther, and undrained shear strength is less.

  • PDF

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests (실내시험을 통한 단층물질의 물리·역학적 특성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.

Physical properties of Southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea (황해 남동부 니질대의 물리적 성질: 동해 및 남해 니질대와의 비교)

  • Kim, Dae-Choul;Kim, Shin-Jeong;Seo, Young-Kyo;Jung, Ja-Hun;Kim, Yang-Eun;Kim, Gil-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.335-345
    • /
    • 2000
  • Physical and acoustic properties of the Southeastern Yellow Sea Mud (SEYSM) of Korea were studied by using 10 piston cores. The data were also compared with mudbelt sediments in the South Sea and the East Sea (southeastern inner shelf) of Korea. The sediments were mainly composed of homogeneous silt. Sandy mud and mud were minor components. The major source of sediment in the study area is probably the Keum River. Finegrained sediments discharged from the river are transported southward by coastal current, resulting in a gradual southward increase in porosity and a decrease in wet bulk density and sound velocity. The mean grain size especially appears to be the most important variable to determine the physical properties and velocity. The variations of physical properties with burial depth are dependent more strongly on sediment texture (especially, silt content) than compaction and/or consolidation. Correlations between the physical properties and the sediment texture show slight deviations from those of the East Sea and the South Sea of Korea in spite of similar pattern within the limiting values. This is probably due to the differences in silt contents, sedimentary environments, mineral compositions, and gas contents.

  • PDF