• Title/Summary/Keyword: 실제 추력

Search Result 108, Processing Time 0.023 seconds

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Sung-Yug;Kim, Dong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2010
  • A small unmanned aerial vehicle(UAV), which uses a propulsion system consisting of electric motor and battery, weighs less than 8 kg, capable of hand launch. Because it is easy to operate and able to transmit image information in real time, the use of small UAV has been increasing. However, very few analysis methods or analysis results on flight performance of the small UAV have been known so far. In this paper, the performance analysis methods of a small UAV, which is manufactured to study an electric powered UAV, are suggested and their results are achieved. Aerodynamic data of the vehicle are obtained by making use of gliding performance from actual flight test, and required thrust and required power by flight speed are predicted. In addition, the methods to predict range and endurance in case of using battery as power source are suggested and their results are achieved.

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

Study on Estimation of Design Factors for 6 Degree-of-Freedom Simulator (6자유도 시뮬레이터의 설계인자 추정에 관한 연구)

  • Yoon, Jun-Seok;Song, Woo-Jin;Byun, Young-Seop;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.447-456
    • /
    • 2010
  • The application of a reliable motion simulator can contribute effectively in the evaluation of the performance of a vehicle platform in the development stage of a small unmanned aerial vehicle (UAV). Therefore, the research on a reliable motion simulator can accelerate the development of UAV and decrease the relevant cost. In this paper, the design factors considered in the preliminary design stage of a 6 degree-of freedom motion simulator are defined and the motion range of the simulator is described on the basis of these design factors. The length, acceleration, and the required thrust of actuators with respect to the motion simulator under development are also predicted. The motion range can be increased and a suitable actuator can be selected and produced by applying these results in the manufacturing process of the motion simulator. Thus, the reliability of the motion simulators can be achieved during the actual design operation of the UAV.

Development of shield-TBM scale model system for excavation of curved section (급곡구간 굴착을 위한 쉴드-TBM 축소모형 장비 시스템 개발)

  • Kong, Min-Teak;Kim, Yeon-Deok;Lee, Kyung-Heon;Hwang, Beoung-Hyeon;An, Jun-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.849-860
    • /
    • 2019
  • This paper is a study on the development of equipment system to obtain data on stability in excavation of sharp curve section of Shield TBM. Shield TBM equipment is being used a lot recently for tunnel excavation. Excavation may result in inevitable detours by buildings above the ground or existing underground structures. Preconstruction simulation is required to verify the stability of the construction in case of this. Therefore, it is necessary to establish an automated control system through the development of this equipment system and conduct simulation through simulation of excavation model in the sharp curve section. A system shall be developed to control the left and right angles and thrust of the equipment, and to view data on the earth pressure and propulsion pressure of the equipment in real time during excavation. With this system, the necessary data can be collected for field testing through excavation method and excavation simulation by angle. It is expected that it will be very useful in assessing the actual Shield TBM by conducting a scale-down model experiment.

Estimation of design parameters of TBM using punch penetration and Cerchar abrasiveness test (압입시험 및 세르샤 마모시험에 의한 TBM의 설계변수 추정)

  • Jeong, Ho-Young;Lee, Sudeuk;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Linear cutting test is known to be very effective to determine machine parameters (i.e. thrust force and torque) and to estimate penetration rate of TBM and other operation conditions. Although the linear cutting test has significant advantages, the test is expensive and time-consuming because it requires large size specimen and high load capacity of the testing machine. Therefore, a few empirical prediction models (e.g. CSM, NTNU and QTBM) alternatively adopt laboratory index tests to estimate design parameters of TBM. This study discusses the estimation method of TBM machine parameters and disc cutter consumption using punch penetration test and Cerchar abrasion test of which the researches are rare. The cutter forces and cutter consumption can be estimated by the empirical models derived from the relationship between laboratory test result with field data and linear cutting test data. In addition, the estimation process was programmed through which the design parameters of TBM (e.g. thrust, torque, penetration rate, and cutter consumption) are automatically estimated using laboratory test results.

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.