• Title/Summary/Keyword: 실수코딩유전알고리즘

Search Result 44, Processing Time 0.022 seconds

RCGA-Based Tuning of the PID Controller for Marine Gas Turbine Engines (RCGA에 기초한 선박 가스터빈 엔진용 PID 제어기의 동조)

  • So Myung-Ok;Jung Byung-Gun;Jin Gang-Gyoo;Jin Sun-Ho;Lee Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.116-123
    • /
    • 2005
  • The PID controllers have been widely accepted in many industrial systems due to their robust performance in a wide range of operating conditions and their functional simplicity To implement a PID controller, its three parameters must be determined for the given plant. Conventional tuning methods are mainly based on experience and experiment and are lack of systematic procedure Recently. to overcome drawbacks of conventional tuning methods, genetic algorithms have been used, In this paper a real-coded genetic algorithm is employed to search for the optimal parameters of the PID controller for speed control of marine gas turbine engines. Simulation results show the effectiveness of the proposed scheme.

RCGA-Based Parameter Estimation of Solar Cell Models (RCGA에 기초한 태양전지 모델의 파라미터 추정)

  • 권봉재;신명호;손영득;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.696-703
    • /
    • 2003
  • A photovoltaic power generation system is an infinite and clean energy system. Recently. because of the realization of high efficiency and low cost PV modules, the studies on the PV system have extensively increased. In this paper. we present an online scheme for parameter estimation of solar cell, based on the model adjustment technique and a real-coded genetic algorithm(RCGA). The ideal diode model and the diode model with series and shunt resistors are used to estimate their parameters, Simulation works using field data in the form of a V-I characteristic curve are carried out to demonstrate the effectiveness of the proposed method.

RCGA-Based Parameter Estimation and Stabilization Control of an Inverted Pendulum System (RCGA를 이용한 도립진자 시스템의 파라미터 추정 및 안정화 제어)

  • Ahn, Jong-Kap;Lee, Yun-Hyung;Yoo, Heui-Han;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.746-752
    • /
    • 2006
  • This paper presents a scheme for the parameter estimation and stabilization of unstable systems, such as inverted pendulum systems. First a stable feedback loop is constructed for an inverted pendulum system and then its parameters are estimated based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. Then, a PI-type LQ control scheme is designed based on the estimated model. The performance of the proposed algorithm is demonstrated through a set of simulation and experiment.

A Study on a Real-Coded Genetic Algorithm (실수코딩 유전알고리즘에 관한 연구)

  • Jin, Gang-Gyoo;Joo, Sang-Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.268-275
    • /
    • 2000
  • The increasing technological demands of today call for complex systems, which in turn involve a series of optimization problems with some equality or inequality constraints. In this paper, we presents a real-coded genetic algorithm(RCGA) as an optimization tool which is implemented by three genetic operators based on real coding representation. Through a lot of simulation works, the optimum settings of its control parameters are obtained on the basis of global off-line robustness for use in off-line applications. Two optimization problems are Presented to illustrate the usefulness of the RCGA. In case of a constrained problem, a penalty strategy is incorporated to transform the constrained problem into an unconstrained problem by penalizing infeasible solutions.

  • PDF

Parameter identification of DC Motor Using a RCGA and model adjustment technique (RCGA와 모델조정기법을 이용한 직류 전동기의 파라미터 동정)

  • So, Myung-Ok;Oh, Sea-June;Yoo, Hee-Han;Lee, Sang-Tae;Choi, Woo-Chel
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.262-267
    • /
    • 2005
  • PID controller is widely used in industries until now. The reason is that the structure is very simple, and that it is easily estimated in terms of hardware, and that it doesn't need a lot of parameters which should be tuned. Therefore, DC motor also uses PID controller. In this paper, a method is proposed to identify parameters of a DC motor system using a RCGA prior to design of PID controller. The model identified using a RCGA is verified through simulations.

  • PDF

RCGA-Based Optimal Speed Control of Marine Diesel Engine (RCGA에 기초한 선박 디젤 엔진의 최적 속도제어)

  • So, Myung-Ok;Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;Cho, Kwon-Hae
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.268-273
    • /
    • 2005
  • The conventional PID controller has been widely used in many industrial control system because engineers can easily understand how to deal with three parameters of PID controller. The conventional tuning methods, however, have a tendency depend on experience and experiment. In this paper a real-coded genetic algorithm is used to search for the optimal parameters of PID controller for marine diesel engine. Simulation results compared with conventional PID controller tuning methods show the effectiveness and good performance of proposed scheme.

  • PDF

Speed Control of Marine Gas Turbine Engines Using a RCGA and Fuzzy Technique (RCGA와 퍼지기법을 이용한 선박용 가스터빈 엔진의 속도제어)

  • So, Myung-Ok;Lee, Yun-Hyung;Jin, Gang-Gyoo;Jung, Byung-Gun;Kang, In-Chul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.274-280
    • /
    • 2005
  • The system parameters of gas turbine engine tend to change remarkably in real operating condition. It means that operators have to consider environment and suitably control fuel flow. The conventional PID controller, however, can not guarantee good control performance in the aspect of system parameter change. This paper, therefore, proposes a scheme for integrating PID control and fuzzy technique to obtain the good performance of gas turbine engine speed control on the whole operating range. The effectiveness of the proposed fuzzy PID controller is verified through computer simulation.

  • PDF

PID Control of Unstable Processes with Time Delay (시간지연을 갖는 불안정한 시스템의 PID 제어)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jung-Ki;Ryu, Ki-Tak;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.721-728
    • /
    • 2009
  • PID control is widely used to control stable processes, however, PID control for unstable processes is less common. In this paper, systematic tuning methods are derived to tune the PID controller for unstable FOPTD(Forst Order Plus Time Delay) processes. The proposed PID controllers for set-point tracking and disturbance rejection problem are tuned based on minimizing the performance indexes (IAE, ISE, ITAE) using a real-coded genetic algorithm. Simulation example is given to illustrate the set-point tracking and disturbance rejection performance of the proposed method.

Control of Inverted Pendulum Systems Using a State Observer (상태관측기를 이용한 도립진자 시스템의 제어)

  • Lee, Yun-Hyung;Ahn, Jong-Kap;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.462-467
    • /
    • 2007
  • The design and synthesis of a state feedback controller assumes the feedback of all state variables of the system. However, some state variables are not physical quantifies so that sensors may not be available, or may be too expensive to measure. Hence, a state observer can be an alternative to estimate unmeasurable state variables. This paper therefore presents a scheme for state observer-based stabilization control of inverted pendulum systems. The feedback gain matrices of both the state feedback controller and the state observer are tuned by real-coded genetic algorithms(RCGAs) such that the given performance indices are minimized. The proposed method is demonstrated through simulations.

RCGA-Based State Observer Design for Container Cranes (컨테이너 크레인을 위한 RCGA기반 상태관측기 설계)

  • Ahn, Jong-Kap;Lee, Yun-Hyun;Ryu, Ki-Tak;Yoo, Heui-Han;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.624-629
    • /
    • 2008
  • This paper presents a scheme for designing a state observer for container cranes. If the system is completely observable with a given set of outputs, then it is possible to determine the states that are not directly measured. We consider the reduced-order states observer with only trolley position detection and with trolley position and container angle detection. The gain matrix of the each state observer is adjusted using a RCGAs. A set of simulation works is carried out to demonstrate the effectiveness of the proposed scheme.