• Title/Summary/Keyword: 실리콘 오일

Search Result 122, Processing Time 0.04 seconds

The Preparation of Non-Silicone Oil Based Adhesion Promoted Silicone Sealant (비실리콘 오일을 BASE로 한 접착력 강화 실리콘 실란트의 제조 개발)

  • Han, Gil-Soo;Jeong, Kyoung-Han;Chun, Yong-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.309-312
    • /
    • 2008
  • We have prepared the silicone sealant using non silicone oil without silicone oil for solvent and using adhesion promotor against various substrate. We are replaced the silicone oil by the mineral oil and the normal adhesion promotor by mixed adhesion promotor at the multi purpose silicone sealant.

  • PDF

Influence of Droplet Size and Oil Viscosity on the Descending Velocity of Droplets Using Water Model With and Without Stirring (교반 유무에 따른 수모델을 사용한 액적의 하강 속도에 대한 액적 크기 및 오일 점도의 영향)

  • Hyeok-In Kwon;Alberto Conejo;Sung Yong Jung;Sun-Joong Kim
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Metal emulsions have been studied for several decades as a method of increasing the efficiency of the steelmaking process. This study was performed using a water model, observable at room temperature, to compensate for the disadvantages of the high-temperature experiment, the results of which are difficult to observe visually. As a substitute for metal-in-slag emulsions, experiments were conducted by dropping distilled water into silicone oil and comparing the results with the results of a calculation by momentum balance equations. The descending velocity of the water droplet decreased as the diameter of the droplet and viscosity of the fluid (silicon oil) increased. To simulate the descending velocity of a water droplet in silicon oil under stirring conditions, the flow rate of the fluid (silicon oil) was measured by particle image velocimetry (PIV) methods. The calculation of the descending velocity of the water droplet was in good agreement with the measured values, with and without stirring a viscous silicone oil.

Quantitative Analysis of Silicone Oil in Antifoaming Agent (소포제중 실리콘 오일의 함량에 대한 분석)

  • Kim, Kyeong Sook;Yang, Seug Ran;LIm, Chun Sik;Park, Hyun Joo
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.4
    • /
    • pp.337-342
    • /
    • 2000
  • Many kinds of experiments were performed for the quality control of antifoaming agents used in thermal power pIants of KEPCO. We tried to establish more convenient ans more accurate quantitative analytical method to determine the amount of silicone oil in silicone oil type antifoaming agent regardless of the amount and/or the type of involved surface active agents. First, the amount of silicone oil was measured by gravimetric method or centrifugal method using very simple apparatus, and then was compared to the results of FT-lR spectroscopy. The centrifugal method was turned out a poor method depending upon the recovery test and virtual experiments. Some antifoaming agents showed very similar results between gravimetric method and spectroscopic methods, and the others gave very different results. We concluded that FT-lR spectroscopy is the most convenient and reliable methodto determine the amounts of silicone oil in the antifoaming agents.

  • PDF

Preparation of Polysiloxane Composite Films with Microphase-Separated Silicone Oiol by Photocrosslinking (광가교 반응에 의한 미세 상 분리된 실리콘 오일을 함유하는 폴리실록산 복합체 필름의 제조)

  • 이정분;김정수;강영구;김동욱;이창진
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.3-8
    • /
    • 2003
  • Polysiloxanes with methacrylate groups at both terminals were synthesized by a hydrosilylation reaction between allyl methacrylate and hydride-terminated polysiloxanes. The polysiloxane methacrylates with high molecular weights could be prepared through the reaction of polysiloxane methacrylates and octamethylcyclotetrasiloxane with an acid catalyst. The structures of the prepared polysiloxane methacrylates were verified by $^1$H- and $^{29}Si-NMR.$ The polysiloxane methacrylates were freely miscible with silicone oils. Polysiloxane films with microphase-separated liquid silicone oil were prepared by photo-crosslinking the mixture of polysiloxane methacrylates and silicone oil. Scanning electron microscopy (SEM) of the films showed that the size of silicone oil droplets became smaller with a lower loading of silicone oil, lower molecular weight of polysiloxane methacrylate, and lower molecular weight of silicone oil.

Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants (증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성)

  • Yoo, Shin Sung;Kim, Dae Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.

Optimum design of propulsion shafting system considering characteristics of a viscous damper applied with high-viscosity silicon oil (고점도 실리콘오일 적용 점성댐퍼 동특성을 고려한 추진축계 최적 설계)

  • Kim, Yang-Gon;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.202-208
    • /
    • 2017
  • The recently developed marine engines for propulsion of ships have higher torsional exciting force than previous engines to improve the propulsion efficiency and to reduce specific fuel oil consumption. As a result, a viscous damper or viscous-spring damper is installed in front of marine engine to control the torsional vibration. In the case of viscous damper, it is supposed that there is no elastic connection in the silicon oil, which is filled between the damper housing and inertia ring. However, In reality, the silicon oil with high viscosity possesses torsional stiffness and has non-linear dynamic characteristics according to the operating temperature and frequency of the viscous damper. In this study, the damping characteristics of a viscous damper used to control the torsional vibration of the shafting system have been reviewed and the characteristics of torsional vibration of the shafting system equipped with a corresponding viscous damper have been examined. In addition, it is examined how to interpret the theoretically optimal dynamic characteristics of a viscous damper for this purpose, and the optimum design for the propulsion shafting system has been suggested considering the operating temperature and aging. when the torsional vibration of the shafting system is controlled by a viscous damper filled with highly viscous silicon oil.

The effect of Oil-aqueous phase Partition Coefficients of Phenoxyethanol according to Oils (오일이 페녹시에탄올의 유.수상 분배계수에 미치는 영향)

  • Cho, Sun-Woong;Lee, Young-Keun;Kim, Mi-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.390-394
    • /
    • 2009
  • In this study, partition coefficients(Kw) of phenoxyethanol in oil-water phase according to type of oils was investigated. Partition coefficients(Kw) were experimented by classified oils that hydrocarbones, fatty alcohols, fatty acids, esters, triglycerides and silicones. It was found that partition coefficients(Kw) of hydrocarbons and silicones were low, but partition coefficients(Kw) of fatty acids, fatty alcohols, esters and triglycerides were high. It was known that the emulsions which were made of oils having low partition coefficients value had a good antimicrobial effects. Thus, the cosmetics stability of microorganisms and skin safety of phenoxyethanol could be improved by using the oils which have low partition coefficients value.

  • PDF

Separation and Recovery of Silicon and Silicon Carbide from Slicing Sludge of Silicon Ingot (실리콘 잉고트 절단 슬러지로부터 실리콘 및 실리콘카바이드 분리 회수)

  • Kim, Byoung-Gyu;Jang, Hee-Dong;Chang, Won-Chul
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.05a
    • /
    • pp.186-190
    • /
    • 2004
  • 실리콘 잉곳의 절단공정에서 발생하는 폐슬러지는 실리콘과 실리콘카바이드 등의 유가자원이 함유되어 있으며, 이를 효과적으로 분리, 회수하는 방법에 대해 검토하였다. 폐슬러지에 함유된 오일은 유기 용매에 의해 용해되어 효과적으로 분리되었고, 불순물인 철분은 자력선별에 의해 제거할 수가 있었다. 또한 실리콘과 실리콘카바이드의 혼합 분말은 중액선별을 통하여 고순도의 실리콘과 실리콘카바이드로 분리할 수가 있었다.

  • PDF

A Study on the Engine Oil Resistant Behaviors of Room Temperature Vulcanizing Silicone Adhesives (상온 경화형 실리콘 접착제의 내엔진 오일성에 관한 연구)

  • Park, Soo-Jin;Jin, Fan-Long;Kim, Jong-Hak;Joo, Hyeok-Jong;Kim, Joon-Hyung
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.196-203
    • /
    • 2005
  • In this work, the engine oil resistant evaluation and breakdown analysis of room temperature vulcanizing silicone adhesives were performed through the surface properties, thermal stabilities, adhesive strength, and morphology measurements. As a result, the permeation of engine oil into adhesive specimens was carried out from surface to center in the specimens. And the oil content in the adhesive specimens was increased and the Si-O-Si bond of the adhesives was decomposed with increasing the aging time. The TGA results indicated that the thermal degradation was mainly occurred at under and surfaces of the specimens. The tensile strength, elongation, and adhesive strength of the adhesives were significantly decreased after the engine oil resistant tests, which could be attributed to the initial lose of adhesive properties resulting from the engine oil absorption and thermal aging. And the failure mode of the adhesive specimens was changed from cohesive failure to interfacial failure.

Manufacturing of 3N Grade Silica by Thermal Oxidation using the Recovered Silicon from the Diamond Wire Sawing Sludge (다이아몬드 와이어 쏘잉 슬러지로부터 회수(回收)한 실리콘의 열산화(熱酸化)에 의한 3N급(級) 실리카 제조(製造))

  • Jeong, Soon-Taek;Kim, Nam-Chul
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.37-43
    • /
    • 2013
  • Unlike the conventional slurry type wire sawing, the diamond wire sawing method adopts diamond plated wire as sawing media instead of slurry consisted of both silicon carbide and oil. Wafering with diamond plated wire leaves solid element of the sludge mostly made up of silicon, and it is not difficult to recover 95% or more of silicon by a simple separation process of oil from the sludge. In this study, silicon was recovered from the sludge by drying process and organic and metal impurities were removed by sintering process. As result 3N grade silica was obtained successfully by thermal processing utilized the fact that the recovered silicon readily combines with oxygen due to fine particle size.