• Title/Summary/Keyword: 실리콘가공

Search Result 218, Processing Time 0.027 seconds

An Experimental Study on the Effect of Capillary Pressure on the Void Formation in Resin Transfer Molding Process (수지이동 성형공정에서 기공형성에 미치는 모세관압의 영향에 관한 실험적 연구)

  • 이종훈;김세훈;김성우;이기준
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.185-194
    • /
    • 1998
  • Flow-induced voids during resin impregnation and poor fiber wetting give serious effects on the mechanical properties of composites in resin transfer molding process. In order to better understand the characteristics of resin flow and to investigate the mechanism of void formation, flow visualization experiment for the resin impregnation was carried out on plain weaving glass fiber mats using silicon oils with various viscosity values. The permeability and the capillary pressure for the fiber mats of different porosities were obtained by measuring the penetration length of the resin with time and with various injection pressure. At low porosity and low operating pressure, the capillary pressure played a significant role in impregnation process. Video-assisted microscopy was used in taking the magnified photograph of the flow front of the resin to investigate the effect of the capillary pressure on the void formation. The results showed that the voids were formed easily when the capillary pressure was relatively high. No voids were detected above the critical capillary number of 2.75$\times$$10^{-3}, and below the critical number the void content increased exponentially with decrease of the capillary number. The content of void formed was independent of the viscosity of the resin. For a given capillary number, the void content reduced with the lower porosity of the fiber mat.

  • PDF

A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process (SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프)

  • Lee Moon Chul;Kang Seok Jin;Jung Kyu Dong;Choa Sung-Hoon;Cho Yang Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS devices such as a vibratory gyroscope often suffer from a lower yield rate due to fabrication errors and the external stress. In the decoupled vibratory gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, fabricated with SOI (Silicon-On-Insulator) wafer and packaged using the anodic bonding, has a large wafer bowing caused by thermal expansion mismatch as well as non-uniform surfaces of the structures caused by the notching effect. These effects result in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) technology. It uses a silicon wafer and two glass wafers to minimize the wafer bowing and a metallic membrane to avoid the notching. In the packaged SiOG gyroscope, the notching effect is eliminated and the warpage of the wafer is greatly reduced. Consequently the frequency difference is more uniformly distributed and its variation is greatly improved. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

  • PDF

Fabrication of Single Capacitive type Differential pressure sensor for Differential Flow meter (차압식 유량계를 실장을 위한 Single Capacitive Type Differential 압력 센서 개발)

  • Shin, Kyu-Sik;Song, Sangwoo;Lee, Kyungil;Lee, Daesung;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • In this paper, we have developed a differential pressure flow sensor designed as a single capacitive type. And the sensor was fabricated using a MEMS process. Differential pressure flow sensors are the most commonly used sensors for industrial applications. The sensing diaphragm and bonding joint of the MEMS pressure sensor are easily broken at high pressure. In this paper, we proposed a structure in which the diaphragm of the sensor was not broken at a pressure exceeding the proof pressure, and the differential pressure sensor was designed and manufactured accordingly. The operating characteristics of the sensor were evaluated at a pressure three times higher than the sensor operating pressure (0-3 bar). The developed sensor was $3.0{\times}3.0mm$ and measured with a LCR meter (HP 4284a) at a pressure between 0 and 3 bar. It showed 3.67 pF at 0 bar and 5.13 pF at 3 bar. The sensor operating pressure (0-3 bar) developed a pressure sensor with hysteresis of 0.37%.

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

A Study on the Non-Toxic Compound-based Multi-layered Radiation Shielding Sheet and Improvement of Properties (무독성 화합물 기반의 다층 구조 방사선 차폐 시트 개발과 특성 개선에 관한 연구)

  • Heo, Ye Ji;Yang, Seung u;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • Most of radiation protection clothing is made of lead with excellent radiation shielding because it has excellent process ability and economic efficiency and has a high atomic number. However, lead is classified as a hazardous heavy metal, and there is a risk of lead poisoning. Recently, research to replace lead has been actively conducted. In this study, a research on a shielding sheet with improved physical properties while maintaining the radiation shielding ability equivalent to that of conventional materials by mixing two materials that are harmless to the human body, such as BaSO4 and Bi2O3, and a silicone material binder Was performed. For comparison evaluation with the existing lead shielding sheet, the shielding rate was evaluated using a 40 degree shielding sheet having the highest porosity. As a result, it was analyzed that the shielding rate was superior to 9 % or more at the same thickness. In addition, as a result of studies to improve the physical properties of the shielding sheet, it was analyzed that the shielding sheet mixed with BaSO4/nylon/Bi2O3 was the best.

Via Cleaning Process for Laser TSV process (Laser TSV 공정에 있어서 Via 세정에 관한 연구)

  • Seo, Won;Park, Jae-Hyun;Lee, Ji-Young;Cho, Min-Kyo;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2009
  • By Laser Through-Silicon-Via process, debris and particles occur when you are forming. Therefore the research of TSV cleaning become important to remove those particles and debris. Both chemical cleaning method that uses a surfactant and physical cleaning method that uses a brush were studied with the via of $30{\mu}m$ diameter and $100{\mu}m$ depth on the 8 inch CMOS Image Sensor wafer. On the DI water and a surfactant in mixture ratio of 2:1, debris show $73{\mu}m^2$ per $0.054mm^2$. Cleaning is superior by lower mixture ratio of DI water and surfactant. In addition, It is less than 5% of debris distribution in the laser condition changed by Laser's frequency and its speed and cleaning had no effect. In the physical cleaning, there are no crack and damage when the system condition is set by $1000{\sim}3000rpm$ strip, $50{\sim}3000rpm$ rinsing, and $200{\sim}300rpm$ brushing Therefore, debris and particles can be removed by enforced chemical method and physical method.

  • PDF

Guided-mode Resonances in Periodic Surface Structures Induced on Si Thin Film by a Laser (레이저에 의해 생성된 Si 박막의 주기적 표면 구조에서의 도파모드 공진 연구)

  • Ji Hyuk Lee;Yoon Joo Lee;Hyun Hong;Eun Sol Cho;Ji Young Park;Ju Hyeon Kim;Min Jin Kang;Eui Sun Hwang;Byoung-Ho Cheong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.241-247
    • /
    • 2023
  • We examine the spectral characteristics of laser-induced periodic surface structures (LIPSSs) formed on an amorphous silicon film irradiated by a 355-nm nanosecond laser. A Gaussian beam with a diameter of 196 ㎛ is used to perform a two-dimensional raster scan. The laser's pulse number is varied from 190 to 280, and its intensity is adjusted within 100-130 mJ/cm2. LIPSSs with a periodicity of approximately 330 nm form on the surface of the Si film, aligned perpendicular to the laser's polarization. Transmission spectra of the samples show dips around 700 nm for transverse electric polarization and around 500 nm for transverse magnetic polarization. The features are investigated with a one-dimensional-grating model using a rigorous coupled-wave analysis. Simulations confirm that the observed dips are due to the resonant modes, depending on the polarization.

A Study on the Influence of Finishing and Polishing Methods on the Gap between Denture Base Resin and Soft Liner (의치의 마무리와 연마법이 의치상 레진과 연성 이장재 간의 공극에 미치는 영향에 관한 연구)

  • Jung, Seung-Hwan;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • The junction between resilient denture liner and the denture base is difficult to finish and polish due to difference of the physical property of the materials. Gaps tend to be formed during finishing and polishing procedures. The purpose of this study was measuring the width of junctional gap between $Molloplast-B^{(R)}$ and denture base material after finishing and polishing procedure, and evaluating the effect of method and direction on gap width. $Molloplast-B^{(R)}$ was processed (according to the manufacturer's instruction) against Lucitone $199^{(R)}$ acrylic resin. 50 specimens were fabricated with a raised center section. All of specimens were examined and photographed with a stereoscopic microscope(x120), and the largest gap along the junction of $Molloplast-B^{(R)}$ and acrylic resin on each specimen was measured. One-way analysis of variance(ANOVA) and independent t-test at 95% confidence level were used to analyze the data and to compare groups. The results of this study were as follows. In comparison with finishing tools, the gap width was the largest in $Molloplast^{(R)}$-Cutter and the smallest in FSQ-cross cut bur. There was statistically significant difference between FSQ-cross cut bur and $Molloplast^{(R)}$-Cutter(p<0.05). There was no significant difference in gap width between the direction of polishing. The mean value of gap width was the smallest in case of no polishing, and the largest in case of polishing with pumice & tin oxide. There was statistically significant difference between pumice and pumice & tin oxide. From the results, it is concluded that the use of $Molloplast^{(R)}$-Cutter in clinic need serious consideration even though it has good cutting ability. Further careful study is needed for finishing and polishing methods for decreasing gap width in junction of two materials.