• Title/Summary/Keyword: 신호잡음

Search Result 3,699, Processing Time 0.037 seconds

Vehicle Visible Light Communication System Utilizing Optical Noise Mitigation Technology (광(光)잡음 저감 기술을 이용한 차량용 가시광 통신시스템)

  • Nam-Sun Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.413-419
    • /
    • 2023
  • Light Emitting Diodes(LEDs) are widely utilized not only in lighting but also in various applications such as mobile phones, automobiles, displays, etc. The integration of LED lighting with communication, specifically Visible Light Communication(VLC), has gained significant attention. This paper presents the direct implementation and experimentation of a Vehicle-to-Vehicle(V2V) Visible Light Communication system using commonly used red and yellow LEDs in typical vehicles. Data collected from the leading vehicle, including positional and speed information, were modulated using Non-Return-to-Zero On-Off Keying(NRZ-OOK) and transmitted through the rear lights equipped with red and yellow LEDs. A photodetector(PD) received the visible light signals, demodulated the data, and restored it. To mitigate the interference from fluorescent lights and natural light, a PD for interference removal was installed, and an interference removal device using a polarizing filter and a differential amplifier was employed. The performance of the proposed visible light communication system was analyzed in an ideal case, indoors and outdoors environments. In an outdoor setting, maintaining a distance of approximately 30[cm], and a transmission rate of 4800[bps] for inter-vehicle data transmission, the red LED exhibited a performance improvement of approximately 13.63[dB], while the yellow LED showed an improvement of about 11.9[dB].

Design of a Low-Power 8-bit 1-MS/s CMOS Asynchronous SAR ADC for Sensor Node Applications (센서 노드 응용을 위한 저전력 8비트 1MS/s CMOS 비동기 축차근사형 ADC 설계)

  • Jihun Son;Minseok Kim;Jimin Cheon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.454-464
    • /
    • 2023
  • This paper proposes a low-power 8-bit asynchronous SAR ADC with a sampling rate of 1 MS/s for sensor node applications. The ADC uses bootstrapped switches to improve linearity and applies a VCM-based CDAC switching technique to reduce the power consumption and area of the DAC. Conventional synchronous SAR ADCs that operate in synchronization with an external clock suffer from high power consumption due to the use of a clock faster than the sampling rate, which can be overcome by using an asynchronous SAR ADC structure that handles internal comparisons in an asynchronous manner. In addition, the SAR logic is designed using dynamic logic circuits to reduce the large digital power consumption that occurs in low resolution ADC designs. The proposed ADC was simulated in a 180-nm CMOS process, and at a 1.8 V supply voltage and a sampling rate of 1 MS/s, it consumed 46.06 𝜇W of power, achieved an SNDR of 49.76 dB and an ENOB of 7.9738 bits, and obtained a FoM of 183.2 fJ/conv-step. The simulated DNL and INL are +0.186/-0.157 LSB and +0.111/-0.169 LSB.

A study on DEMONgram frequency line extraction method using deep learning (딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구)

  • Wonsik Shin;Hyuckjong Kwon;Hoseok Sul;Won Shin;Hyunsuk Ko;Taek-Lyul Song;Da-Sol Kim;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.78-88
    • /
    • 2024
  • Ship-radiated noise received by passive sonar that can measure underwater noise can be identified and classified ship using Detection of Envelope Modulation on Noise (DEMON) analysis. However, in a low Signal-to-Noise Ratio (SNR) environment, it is difficult to analyze and identify the target frequency line containing ship information in the DEMONgram. In this paper, we conducted a study to extract target frequency lines using semantic segmentation among deep learning techniques for more accurate target identification in a low SNR environment. The semantic segmentation models U-Net, UNet++, and DeepLabv3+ were trained and evaluated using simulated DEMONgram data generated by changing SNR and fundamental frequency, and the DEMONgram prediction performance of DeepShip, a dataset of ship-radiated noise recordings on the strait of Georgia in Canada, was compared using the trained models. As a result of evaluating the trained model with the simulated DEMONgram, it was confirmed that U-Net had the highest performance and that it was possible to extract the target frequency line of the DEMONgram made by DeepShip to some extent.

A Study on Usefulness of Specific Agents with Liver Disease at MRI Imaging: Comparison with Ferucarbotran and Gd-EOB-DTPA Contrast Agents (간 병변 특이성 조영제 자기공명영상에 대한 연구: Ferucarbotran과 Gd-EOB-DTPA 조영제의 비교)

  • Lee, Jae-Seung;Goo, Eun-Hoe;Park, Cheol-Soo;Lee, Sun-Yeob;Choi, Yong-Seok
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2009
  • The purpose of this experiment is to know the relation of the detection and characterization of liver's diseases as comparison of finding at MR imaging using a Ferucarbotran (SPIO) and Gd-EOB-DTPA (Primovist) agents in diffuse liver disease. A total of 50 patients (25 men and 25 women, mean age: 50 years) with liver diseases were investigated at 3.0T machine (GE, General Electric Medical System, Excite HD) "with 8 Ch body coil for comparison of diseases and contrast's uptake relation, which used the LAVA, MGRE." All images were performed on the same location with before and after Ferucarbotran and Gd-EOB-DTPA administrations (p<0.05). Contrast to noise ratio of Ferucarbotran and Gd-EOB-DTPA in the HCC were $3.08{\pm}0.12$ and $7.00{\pm}0.27$ with MGRE and LAVA pulse sequence, $3.62{\pm}0.13$ and $2.60{\pm}0.23$ in the hyper-plastic nodule, $1.70{\pm}0.09$ and $2.60{\pm}0.23$ in the meta, $2.12{\pm}0.28$ and $5.86{\pm}0.28$ in the FNH, $4.45{\pm}0.28$ and $1.73{\pm}0.02$ in the abscess and ANOVA test was used to evaluate the diagnostic performance of each disease (p<0.05). In conclusions, two techniques were well demonstrated with the relation of the detection and characterization of liver's diseases.

  • PDF

Comparison of the DGPS Positioning Accuracies for Single and Multiple Reference Stations in the South Coast of Korea (한국 남해안에서 단일 및 복수 기준국에 의한 DGPS의 측위정도 비교)

  • Park, Noh-Seon;Shin, Hyeong-Il;Lee, Dae-Jae;Shin, Hyeon-Ok;Kim, Seok-Jae;Bae, Mun-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.181-189
    • /
    • 2002
  • This paper describes the positioning accuracies for single and multiple reference stations at fixed stations in Yosu harbor and Pukyong National University in the south coast of Korea from Jan. to Oct. 2001. Also we observed the change of positioning accuracy during a day and the available range of the DGPS reference station. he results obtained are main summarized as follows; 1. With single DGPS reference station, 2drms and the average positioning .error were 5.6m, 7.3m respectively. Measurement positions indicated an incline toward one way away from the actual position. 2. With multiple DGPS reference stations, 2drms and the average position error were 5.5m, 3.2m for the arithmetic mean, respectively. They were 5.3m, 3.8m for the weighted average, respectively. As far as the separation between the user and the reference station, using multiple reference stations improved position accuracy more than using single reference station. 3. The average positioning error increased between 16: 00 and 22 : 00. The average number of observed satellite and HDOP were 7.1m, 0.49 respectively. 4. Coverage of DGPS reference stations in the south coast of Korea was estimated to be 110nm. Signal strength and signal to noise ratio was not available the DGPS signal below 19㏈, 8㏈ respectively.

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System (부가필터 사용 시 전방 산란선량에 따른 화질 영향에 대한 연구)

  • Choi, Il-Hong;Kim, Kyo-Tae;Heo, Ye-Ji;Park, Hyong-Hu;Kang, Sang-Sik;Noh, Si-Cheol;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • Recent clinical field utilizes the aluminium filter in order to reduce the low-energy photons. However, the usage of the filter can cause adverse effect on the image quality because of the scattered dose that is generated by X-ray hardening phenomenon. Further, usage of filter with improper thickness can be a reason of dose creep phenomenon where unnecessary exposure is generated towards the patient. In this study, the author evaluated the RMS and the RSD analysis in order to have a quantitative evaluation for the effect of forward scattering dose by the filter on the image. as a result of the study, the FSR and the RSD was increased together with the increasing of thickness of the filter. In this study the RSD means the standard deviation of the mean value is relatively size. It can be understood that the signal-to-noise ratio decreases when the average value is taken as a signal and the standard deviation is judged as a noise. The signal-to-noise ratio can understanding as index of resolution at image. Based on these findings, it was quantitatively verified that there is a correlation of the image quality with the FSR by using an additional filter. The results, a 2.5 mmAl which is as recommended by NCRP in the tube voltage of 70 kVp or more showed the 14.6% on the RSD when the filter was not in used. these results are considered able to be utilized as basic data for the study about the filter to improve the quality of the image.

Regional Characteristics of Global Warming: Linear Projection for the Timing of Unprecedented Climate (지구온난화의 지역적 특성: 전례 없는 기후 시기에 대한 선형 전망)

  • SHIN, HO-JEONG;JANG, CHAN JOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • Even if an external forcing that will drive a climate change is given uniformly over the globe, the corresponding climate change and the feedbacks by the climate system differ by region. Thus the detection of global warming signal has been made on a regional scale as well as on a global average against the internal variabilities and other noises involved in the climate change. The purpose of this study is to estimate a timing of unprecedented climate due to global warming and to analyze the regional differences in the estimated results. For this purpose, unlike previous studies that used climate simulation data, we used an observational dataset to estimate a magnitude of internal variability and a future temperature change. We calculated a linear trend in surface temperature using a historical temperature record from 1880 to 2014 and a magnitude of internal variability as the largest temperature displacement from the linear trend. A timing of unprecedented climate was defined as the first year when a predicted minimum temperature exceeds the maximum temperature record in a historical data and remains as such since then. Presumed that the linear trend and the maximum displacement will be maintained in the future, an unprecedented climate over the land would come within 200 years from now in the western area of Africa, the low latitudes including India and the southern part of Arabian Peninsula in Eurasia, the high latitudes including Greenland and the mid-western part of Canada in North America, the low latitudes including Amazon in South America, the areas surrounding the Ross Sea in Antarctica, and parts of East Asia including Korean Peninsula. On the other hand, an unprecedented climate would come later after 400 years in the high latitudes of Eurasia including the northern Europe, the middle and southern parts of North America including the U.S.A. and Mexico. For the ocean, an unprecedented climate would come within 200 years over the Indian Ocean, the middle latitudes of the North Atlantic and the South Atlantic, parts of the Southern Ocean, the Antarctic Ross Sea, and parts of the Arctic Sea. In the meantime, an unprecedented climate would come even after thousands of years over some other regions of ocean including the eastern tropical Pacific and the North Pacific middle latitudes where an internal variability is large. In summary, spatial pattern in timing of unprecedented climate are different for each continent. For the ocean, it is highly affected by large internal variability except for the high-latitude regions with a significant warming trend. As such, a timing of an unprecedented climate would not be uniform over the globe but considerably different by region. Our results suggest that it is necessary to consider an internal variability as well as a regional warming rate when planning a climate change mitigation and adaption policy.

Preliminary Study on the Relationship between Self-Induced Mental Imagery and GSR - Comparison among Mental Imageries Inducing Pleasantness or Unpleasantness and Mental Arithmetic (심상자극과 GSR의 관계에 대한 예비연구 - 쾌.불쾌를 유발하는 심상자극과 암산과제에 대한 SCL 반응비교)

  • 이봉건;정인원;김재진;신철진
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.11-22
    • /
    • 2002
  • This study investigated the effects of mild mental imagery inducing pleasantness or unpleasantness and cognitive mental arithmetic task on skin conductance level. Subjects were f undergraduates(male 5, female 4). They were given the list of the words and asked to write down the liked objects and the disliked ones freely associated with these words. Among these objects the most-liked one and the most disliked one were selected as the self-induced mental imageries. Data-collection procedures were as follows ; first baseline, pleasant imagery, 2nd baseline, unpleasant imagery, finally 3rd baseline, and mental arithmetic task subtracting continuously 7 from the number 500. During these trials, the SCLs were recorded every 10 seconds. The results indicated that there were nonsignificant differences between the 3 trial-baselines ot each condition. This suggested that unlike the procedures used in the previous studies, our procedures would give the stability of the baseline level necessary for the comparison of the effects of several stimuli. Also, the level of skin conductance in mental arithmetic condition was significantly higher than that of the emotional mental imagery. This suggested the possibility that mental arithmetic task would gave rise to the higher physiological arousal in comparison to mental imageries. Overall, it was suggested that the procedures and the stimulus presentation methods used in this preliminary study could be useful for the data-collection techniques for The future study. Implications for the future study were presented.

  • PDF

A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar) (오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.