• Title/Summary/Keyword: 신초 생장

Search Result 277, Processing Time 0.031 seconds

Effect of BA Concentrations and Culture Methods on in Vitro Plant Multiplication from Shoot-Tip Culture of Wasabia japonica (고추냉이 정단배양에 있어서 BA 농도 및 배양방법에 따른 기내증식 효과)

  • Park, Yun-Young;Cho, Moon-Soo;Lee, Young-Deuk;Chung, Jong-Bae;Park, Shin;Jeong, Byeong-Ryong;Park, Sang-Gyu
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Effect of BA concentrations and culture methods on in vitro plant multiplication from shoot-tip cultures of Wasabia japonica was studied. Shoot-tips with leaf primordia and apical meristem were cultured on MS basal medium for all the experiments. Liquid medium for 2 weeks followed by semi-solid medium for 4 weeks containing 1.0 mg/L BA was the best to number of shoots (22.8) and shoot length (3.5 cm). Shoots proliferated could be divided into ca. 5 to 11 of cultures for the multiplication of plantlets. Divided plantlets showed root formation (90%) well onto MS basal medium without growth regulators like IBA and NAA. After rooting, all the plantlets transferred into the pots containing composed soil (bio-media Co., peatmoss $8{\sim}10%$, coir dust $66{\sim}70%$, zeolite $13{\sim}17%$, vermiculite $3{\sim}7%$, perlite $2{\sim}4%$) and grown well into whole plants with multiple shoots.

Plant regeneration from protoplasts-derived from embryogenic callus of Citrus (감귤 embryogenic callus 원형질체 배양에 의한 식물체 재분화)

  • An, Hyun-Joo;Lee, Dong-Hoon;Lee, Ji-Hyun;Choi, Young-Hun;Kang, Byoung-Cheorl;Park, Hyo-Guen
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.81-86
    • /
    • 2008
  • This study describes conditions for plant regeneration from protoplasts-derived from embryogenic callus of satsuma mandarin. Plants were generated via somatic embryogenesis. Protoplasts isolated directly from nucellar callus induced from immature ovule of satsuma mandarin cv. Okitsu (Citrus unshiu Marc.) were cultured in 0.6M $BH_3$ medium. Cell division and plating efficiency were affected by protoplast culture method. The liquid over solid method was the most effective for formation of microcalli. Most of microcalli grew rapidly and transferred onto embryoid formation medium. Optimum embryoid formation medium was MT medium containing 1.5 g/L malt extract, 0.146 M sucrose and the medium for plantlet regeneration was MS medium containing 0.09M sucrose, 1.0 mg/L $GA_3$. No differences were noticed in growth habits and leaf characters such as shape, thickness, and colour between protoplast-derived plants and nucellar seedlings. This plant regeneration system from protoplasts-derived from embryogenic callus provides an alternative way for producing new scion and rootstock cultivar from citrus species which can not be crossed.

Propagation Characteristics of Seed and Rhizome of Green kyllinga(Kyllinga brevifolia var. leiolepsis H.) (파대가리(Kyllinga brevifolia var. leiolepsis H.) 종자형성과 근경(根莖)의 번식특성)

  • Kim, J.S.;Kwak, H.H.;Jung, S.Y.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.301-308
    • /
    • 1996
  • In this study, a propagation characteristics of green kyllinga(Kyllinga brevifolia var. leiolepsis H.) was investigated. Two to three rhizomes(1st rhizome) arised from the basal part of main shoot at 4th leaf stage and were grown to extend on the soil surface. Then new shoots(lst tillers) emerged from every node of the 1st rhizome. Second rhizomes also arised from the basal part of lst tiller at the time of 4th leaf openning. With such a regularity, 5th rhizomes and about 688 shoots were produced from one plant during one year-cultivation without competition under the natural condition. The degree of vegetative growth and seed formation was 3 times and 2.5 times higher in rhizomeoriginated plant than in that from seed, respectively. The amount of seed formation and the 1000 seeds weight was highest in one planted on June 1 and Aug. 1, respectively. Short-day treatment of less than 14hr appeared to be necessary for the induction of flowering and it was effective as treated not during germination but since at least 2 leaf stage of green kyllinga. Each shoot individually responded to short-day. When plants were exposed to short-day (9hr, day / 15hr, night) treatment at the stage of 2-3 leaves, more than 7 cycles were required for flowering induction. Bolting in main shoot occurred after emergence of 4 leaves under the short-day condition. Exogenous $GA_3$ slightly accelerated the velocity of bolting only in short-day condition.

  • PDF

Influence of Crown Gall Infection on Growth and Flowering of Rose (뿌리혹병 감염이 장미의 생육과 개화에 미치는 영향)

  • Han, Kyung-Sook;Kim, Won-Hee;Park, Jong-Han;Han, You-Kyoung;Cheong, Seung-Rong
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • Crown gall of rose (Rosa hybrida) was observed in greenhouse during 2003-2007. The average disease incidence was up to 38.1 % and was more severe in hydroponic culture as compared to soil culture. The typical gall symptom occurred mainly on the root, crown, or both, and resulted on poor rooting, growth retardation and yield loss. The reduction rate of rooting influenced by crown gall was 57.5% as compared to healthy plants on nursery stock. The location of gall formation in the plant influenced growth vigor resulting in symptoms such as poor shooting. Healthy plants produced 19.1 flowers/$m^2$, while diseased plants produced 9.5 flowers/$m^2$ during the same cultivation period. Moreover, the number of days to flowering was longer for the diseased plants than for healthy plants - 51.2 days and 39.8 days for first harvest, and 60.6 days and 52.1 days for the second harvest, respectively. Conclusively, infection on the basal stem caused serious loss of the number of shoot formation; yield loss of cut flower was 38.7% due to crown gall infection and delay of harvesting time about 8-10 days.

Induction of Petal Color Mutants through Gamma Ray Irradiation in Rooted Cuttings of Rose (장미 삽목묘의 감마선 처리에 의한 화색 돌연변이체 유기)

  • Koh, Gab-Cheon;Kim, Min-Za;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.796-801
    • /
    • 2010
  • This study was carried out to establish a system for mutation breeding by irradiation of gamma-ray in $Rosa$ $hybrida$ Hort. The rooted cuttings of two roses, 'Spidella' and 'Cabernet' were irradiated with different gamma-ray doses (0, 30, 50, 70, 90, 110, 130, 150 and 170 Gy) from a $^{60}Co$ source to reveal an optimal dose for induction of mutants. The irradiated plants were planted in a greenhouse, and investigated on the appearance of petal color mutants and shoot growth by gamma ray dose. The 50% lethal doses ($LD_{50}$) of plant were 110 Gy for 'Spidella' and 150 Gy for 'Cabernet', respectively. The 50% decrease dose of shoot length was observed at 70-90 Gy dose for 'Spidella', and 110 Gy dose for 'Cabernet'. Solid, chimeric and mosaic petal mutants with various colors were induced from pink petal of 'Spidella' and red petal of 'Cabernet' when 30-170 Gy dose was irradiated. The mutants obtained from 'Spidella' had white, ivory, pinky ivory, light pink and deep pink petal colors. The mutants obtained from 'Cabernet' had pink, deep pink, purple red (magenta), orange red and purple petal colors. It was suitable to irradiate 70-90 Gy dose for 'Spidella' and 90-110 Gy dose for 'Cabernet' for the induction of various mutants considering plant survival rate, shoot growth and mutant occurrence rate.

Fruit Characteristics of the Secondary Bearing Shoots of Blueberry 'Scintilla' Grown in a Heated Greenhouse (가온 하우스 재배 블루베리 '신틸라'에 있어서 2차 결과지의 과실 특성)

  • Mi Geon Cheon;Kyung Mi Park;Sang Woo Choi;Seong-Tae Choi;Hye Suk Yoon;Weong Gwang Kim;Jin Gook Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.336-341
    • /
    • 2023
  • This study examines the characteristics of berries from secondary bearing shoots of 'Scintilla' southern highbush blueberry, grown hydroponically in the Jinju, Gimhae, and Uiryeong regions of Gyeongnam Province. Typically, 'Scintilla' forms flower buds at the tips of regular bearing shoots during the previous season, yielding berries in the current season. However, under heated cultivation, we observed a proliferation of secondary bearing shoots that produce berries in the same growing season. Flowering and harvesting on secondary bearing shoots were delayed by 52 and 36 days, respectively, compared to regular bearing shoots. However, these shoots exhibited a 54% increase in diameter and a 10% increase in length. We found no significant difference in berry size and soluble solid content between the two types of shoots. Notably, berries from the secondary bearing shoots had higher potassium and lower calcium and magnesium concentrations. We conclude that berries from secondary bearing shoots could be marketable, provided the bushes are healthy. These findings provide valuable insights for optimizing cultural practices to improve the yield and quality of blueberries under specific environmental conditions.

Effect of different light sources and ventilation on in vitro shoot growth and rooting of a rare and endangered species, Tsuru-rindo(Tripterospermum japonicum) (희귀 및 멸종위기 식물 덩굴용담의 기내생장에 미치는 광질 및 환기효과)

  • Moon, Heung-Kyu;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Effects of light generated by LEDs on shoot growth and rooting of Tsuru-rindo(Tripterospermum japonicum) were evaluated. Apical shoots(one or two node with 3-4 leaves) were cultured on MS basal medium with 3% sucrose and maintained for four weeks under five different light qualities: fluorescent lamp(F), 100% red LED(R), 70% red LED+30% blue LED(R7B3), 50% red LED+50% blue(R5B5), or 100% blue LED(B). Rooting was promoted by both red light and fluorescent lamp, and the effect was further promoted under the ventilation. Red light enhanced shoot node elongation, whereas blue light appeared to suppress it. Growth of shoots and leaves were enhanced under the ventilation irrespective of the different light qualities. Under the ventilated condition, total fresh weight of plants was highest in R7B3 LED as 257.7 mg per plant. Dry matters, which are used for index of plant growth, were lowest under red light, whereas it was highest under blue light. The dry matter was inclined to getting higher by ascending the ratio of blue light and red light. Total chlorophyll content was highest in both R7B3 LED and R5B5 LED under ventilation as 29.5 and 31.2, respectively. Above results suggest that light quality optimization could be an important factor to foster in vitro growth of the species. Ventilation treatment appeared to be another important factor to induce normal shoot growth and rooting.

Growth of Kale Seedlings Affected by the Control of Light Quality and Intensity under Smart Greenhouse Conditions with Artificial Lights (인공광 스마트온실에서 광질 및 광강도 제어가 케일 실생묘의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Jae-Su;Lee, Gong-In;Kim, Hyun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • BACKGROUND: Plant growth under smart greenhouse (that is plant factory system) conditions of an artificial light type is significantly depending on the artificial light sources such as a fluorescent lamps or Light-Emitting Diodes (LEDs) with specific spectral wavelengths regardless of the outside environmental changes. In this experiment, characteristics on the growth and compound synthesis of kale seedlings affected by light qualities and intensities provided by LEDs were mentioned. METHODS AND RESULTS: The kale seedlings which developed 3~4 true leaves were exposed by fluorescent lamps or LEDs lights of red (R), blue+white (BW), blue+red (BR) with 50 (L) or $100(H){\mu}mol/m^2/s^1$ photosynthetic photon flux (PPF) under hydroponic culture system of deep flow technique for 50 days. Shoot fresh weight increased under the RH, BWH, and BRH treatments with higher PPF. Shoot elongation of the seedlings decreased, and polyphenol synthesis promoted by the higher light intensity conditions. Sugar synthesis in the leaves was above 2 times greater under the RH treatment of monochromic red light quality with $100{\mu}mol/m^2/s^1\;PPF$ than $50{\mu}mol/m^2/s^1\;PPF$. CONCLUSION: The results show that the control of light quality and intensity in the smart greenhouse conditions with artificial lights significantly affects the growth and compound synthesis in the fresh kale leaves with higher culture efficiency compared to the conventional soil culture under greenhouse or field conditions. Researches on the optimum light intensities of the LEDs with special spectral wavelengths are necessary for maximum growth and metabolism in the seedlings.

The Effect of Rubber Banding Material on Root Development after Transplanting of Landscape Trees - For Pine Trees - (고무밴드 결속재가 조경수목 이식 후 뿌리발달에 미치는 영향 - 소나무류를 대상으로 -)

  • Park, Hyun;Park, Yong-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.52-62
    • /
    • 2015
  • This study conducted an experiment to clarify the effect of rubber bands used as a root connector during the process of transplanting landscape trees on the development of the root system and the rooting process. The research period was four years, from April 2007 to April 2011, and the test conducted for this study was performed at the experimental field located at 398-2 Bangdong-ri, Sacheon-myeon, Gangneung-si, Gangwon-do. Twenty 15-year-old Pinus densiflora Siebold & Zucc. with good growth conditions were harvested and transplanted from the forest in Jebi-ri, Gujeong-myeon, Gangneung-si, Gangwon-do for the field experiment. A completely randomized design was applied for plot design, with 10 pines without rubber bands and 10 pines with rubber bands. Pinus densiflora for. multicaulis Uyeki was selected as the official tree of the pot test and was planted in a transparent pot to observe the development of the root system. A completely randomized design was applied for plot design, with 3 pines without rubber bands and 3 pines with rubber bands. The results of this research on the effect of rubber bands used as a root connector on root system development and the rooting process are as follows. 1. The rate of height growth in the field test was 4.1% lower in the trees with rubber bands when compared to trees without rubber bands. Trees with rubber bands were 4.2% wider than those without rubber bands in root diameter. The chlorophyll content was 6.8% higher in trees without rubber bands, but the rate of height growth, root diameter, and chlorophyll content were not significantly correlated. 2. In the comparison of fresh root weight in the field test, trees with rubber banding had roots weighing 1,740.0kg and those without rubber bands had roots weighing 1,433.3kg. Root dry weight was 522.3g in trees with rubber bands and 450.0g in those without rubber bands, but showed no significant difference depending on whether the rubber band was attached. 3. In a comparison of root number between surfaces touching and not touching the rubber band in trees with rubber banding, the surface touching the rubber band was observed to have more roots growing, the difference of which was deemed significant. 4. The shoot growth rate in the pot test was 1.1% higher in trees without rubber bands when compared with trees with rubber bands. The chlorophyll content was 0.02 higher in trees with rubber bands but the difference was not significant. 5. In the pot test, no significance was found in comparison of root number, root length, and root dry weight in trees with and without rubber bands. These test results imply that removing rubber bands as a connector does not present any significant effects on the ground growth or root development of transplanted pine trees. As it is shown that surface touching rubber bands grow more roots in trees with rubber bands, more active related research must be undertaken.

Influence of Plant Growth Regulators on Shoot Multiplication of Thymus quinquecostatus Celak. (백리향 (Thymus quinquecostatus Celak.)의 기내증식에 미치는 식물생장조절물질의 영향)

  • Lee, Keum-Young;Kang, Ho-Duck
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • In vitro culture system was established to induce multiple shoots of Thymus quinquecostatus Celak. by investigating the effects of cytokinins. Stem explants were cultures on MS medium supplemented with either five drfferent plant growth regulators or their combinations under light or dark condition. The most effective cytokininsource was the combination of BA 1.0mg/L and TDZ 0.1mg/L for producing shoots (6.05$\pm$1.51), zeatin 2.0mg/L and TEZ 0.1mg/L for elongating shoots (3.27$\pm$0.66cm) under the light condition. In addition the most effective cytokinin was 2-ip 2.0mg/L for producing shoots(5.20$\pm$1.81), zeatin 2.0mg/L for elongating shoots(5.64$\pm$1.24cm)under the dark condition. Overall, the average percent for in vitro shooting was greater than 89.58%.