• Title/Summary/Keyword: 신소재의 적용

Search Result 630, Processing Time 0.023 seconds

Estimation of Bearing Capacity for In-Situ Top-Base Method by Field Experimental Plate Load Test (현장평판재하시험에 의한 현장타설형 팽이말뚝기초의 지지력산정)

  • Shin, Eun-Chul;Ahn, Min-Hye
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The problems like a deterioration of loading bearing capacity, an exaggeration of settlement and lateral deformation are able to be generated, meanwhile structures are built in soft ground. Top-Base method is belonged to a rigidity mat foundation method which is used to surface treatment of soft ground. This method makes an effect to increase the bearing capacity of foundation using friction force, and prevent the differential settlement. Further more, the In-Situ Top-Base method has advantages in the phase of economic effect by reduction of the construction cost and offers an expediency on construction comparing with precast products. This paper presents the way of the estimation of bearing capacity for In-Situ Top-Base method through field plate load test in soft ground. It utilizes the results to a future design by analyzing the properties in the existing study and designs through these analysis and calculating the top-base method's reasonable range.

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.

Drain Capacity of PVD Filter Considering the Field Condition (현장 토질특성을 고려한 연직배수재 필터의 성능평가)

  • Han, Sung-Su;Jeong, Kyeong-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • PVD (Prefabricated Vertical drain) consists of filter and core. An effective PVD has two basic filtration functions ; first to retain soil particle ; and second, to allow water to pass from the soil into the PVD core without clogging or blinding. Clogging which reduces the permeability of the geotextile filter jacket is caused by fine particles penetrating into the geotextile filter jacket in relatively low permeability soil conditions. As clogging performance increases gradually, excess pore water flow from soil is resisted and finally consolidation delays. Current soil-geotextile filter system criteria are generally based on relationships between a representative pore size of the geotextile and particle size of the soil. In Korea, PVD geotextile filter system criteria have been applied by only testing AOS (Apparent Opening Size) of filters without evaluating the filtration and clogging performance on soil-geotexile filter systems. Therefore, the filtration tests on soil-geotexile filter systems were conducted in order to evaluate the filtration and clogging performance with 3 kinds of geotextile filters. On these tests, we have applied geotextile filter system criteria on PVD in ${\bigcirc}{\bigcirc}$ sites.

  • PDF

Dewatering of dredged sludge using geotextile tube (지오텍스타일 튜브를 활용한 준설오니 탈수처리에 관한 연구)

  • Shin, Eun-Chu;Jang, Woo-Lam;Kim, Sung-Hwan;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Recently, dewatering process method of high water content materials that utilize geotextile has many applications in variety fields. It is method of dewatering to solid step through self-weight consolidation process after pour sludge using filtering efficiency and dewatering efficiency. Analyzed application of domestic manufactured geotextile tube that can examine physical characteristics of geotextile tube and filling soil and achieve filtering efficiency and dewatering efficiency. Based on the various laboratory and field test results mixing proportions of water and soil is about 6:4 at least. Polypropylene geotextile is more effective for drainage and dewatering function of geotextile tube application.

  • PDF

Evaluation of PBD as Horizontal Drains of Soilbag Retaining Wall (토낭 보강토 옹벽의 수평 배수재로서 PBD의 적용성 평가)

  • Shin, Eun-Chul;Lee, Myung-Shin;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 2013
  • Recently, construction of reinforced earth structure using geosynthetics has been increased because it has advantages such as construction efficient, cost effectiveness and appearance aspect against existing gravity or cantilever retaining wall. However due to the climate change in Korea excessive inflow of ground water and surface water from heavy rainfall could affect the stability of reinforced retaining wall seriously. So the discharge capacity of drains should be evaluated by using experimental method in the design of reinforced earth wall. In this study, instead of concrete block used in most of the retaining wall, eco-friendly porous soilbag was used. This paper describes the test method and result of the laboratory testing for determination of discharge capacity utilizing PBDs.

Evaluation on Partially Drained Strength of Silty Soil With Low Plasticity Using CPTU Data (CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.55-66
    • /
    • 2017
  • The standard piezocone penetration rate of 2 cm/s is proposed in specifications regardless of soil type. However, conditions of standard Piezo Cone Penetration (CPTU) Testings in silty soils with low plasticity vary from undrained to partially drained or fully drained penetration conditions. The partially drained shear strengths of Incheon, Hwaseong and Gunsan silty soils were estimated from the analysis results of the distributions of CPTU-based shear strengths. The CPTU-based shear strengths were compared between the undrained shear strength line and the fully drained shear strength line, which were determined from approximately ${\varphi}^{\prime}=3^{\circ}$ and ${\varphi}^{\prime}=15^{\circ}$, respectively. The internal friction angles obtained from the back analysis and UU-tests tended to increase with decreasing plasticity index, which range approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=14^{\circ}$. The results matchs well with CPTU-based estimation results.

Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity (비개착식 지반공동 긴급복구를 위한 충전재료 개발에 관한 기초 연구)

  • YU, Nam-Jae;Choi, Ju-Hyun;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • Recently, there have been a lot of incidents related to ground sinks in urban areas, but restoration work is complicated and inconvenience due to on-site control, and particularly, grouting and soil filling are generally applied as recovery measures, but when the grouting or the soil filling is carried out, material segregation phenomenon occurs in the ground or a lot of restoration amount is often required, depending on the state of sinks and the existence of groundwater under the ground and the soil can be lost due to the flow of the ground water, and thus the purpose of this study is to develop a pouch-type filler applied to a trenchless method for emergency reinforcement of the ground sinks with the aim of quick recovery of the ground sink in urban areas, and as a result, it was confirmed that compression strength and the expansion ratio were different according to the temperature of ground water and the compression strength and the expansion ratio could be controlled by mixing alumina powder.

Assessment of Resistance to Application Environment of Geotextile Composites (복합형 지오텍스타일의 적용환경에 대한 저항성 평가)

  • Jeon, Han-Yong;Lyoo, Won-Seok;Ghim, Han-Do;Chung, Chin-Gyo;Cho, Bong-Gyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.25-38
    • /
    • 2003
  • Geotextile composites to improve the resistance to the application environment were manufactured of recycled polyester geotextile with carbon black as ultraviolet stabilizer and polypropylene geotextile by needle-punching method. Mechanical properties, ultraviolet resistance and chemical stability were evaluated. Retention ratio of tensile properties of polypropylene geotextiles were decreased about 50% with the exposed condition by ultraviolet but those of geotextile composites showed the slightly decrease. Geotextile composites which have larger weights of recycled polyester geotextile were more stable against ultraviolet. For chemical stability, the changes of tensile strength values of geotextile composites were in the range of -20~+10% at the various chemical conditions.

  • PDF

A case study on reinforcement and design application of reinforced earth wall using micro pile (마이크로 파일을 이용한 블록식 보강토옹벽의 보강 및 설계적용 사례 연구)

  • Hong, Kikwon;Han, Jung-Geun;Lee, Kwang-Wu;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.161-167
    • /
    • 2014
  • This paper describes reinforcement method of reinforced earth wall near the abutment. The excessive displacement of a case affected by reduction of bearing capacity due to macro-environment condition like a coast. That is, the front displacement of reinforced earth wall has been happening continuously due to strength reduction of foundation ground. The micro pile is applied to reinforcement method, in order to secure a bearing capacity and global slope stability of reinforced earth wall. The results of numerical analysis confirmed that reinforcement method based on micro pile can secure a stability of structure, while the reconstruction of reinforced earth wall is impossible by construction and macro-environment condition.

Stability evaluation of reinforced earth walls based on large-scale modular blocks (대형 축조블록을 이용한 보강토옹벽의 안정성 평가)

  • Han, Jung-Geun;Kim, Min-Woo;Hong, Kikwon;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 2014
  • This paper describes external and internal stability of reinforced earth wall using large-scale modular block and geogrid reinforcement. The evaluation for external and internal stability was conducted to analyze effect of wall height, reinforced soil (or backfill soils) and reinforcement strength. The external stability showed that the analysis cases were satisfied with design criteria, when the required minimum length and vertical spacing of reinforcement were 0.7H and 1m, respectively. The internal stability conformed that some cases were satisfied with design criteria in $25^{\circ}$ of internal friction angle of reinforced soil. Expecially, it will be applicable as wall structure considering a structural stability and economic efficiency based on evaluation of internal stability.