• Title/Summary/Keyword: 신뢰성 공학

Search Result 2,460, Processing Time 0.026 seconds

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

A Fundamental Study on Analysis of Electromotive Force and Updating of Vibration Power Generating Model on Subway Through The Bayesian Regression and Correlation Analysis (베이지안 회귀 및 상관분석을 통한 지하철 진동발전 모델의 수정과 기전력 분석)

  • Jo, Byung-Wan;Kim, Young-Seok;Kim, Yun-Sung;Kim, Yun-Gi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.139-146
    • /
    • 2013
  • This study is to update of vibration power generating model and to analyze electromotive force on subway. Analysis of electromotive force using power generation depending on classification of locations which are ballast bed and concrete bed. As the section between Seocho and Bangbae in the line 2 subway was changed from ballast bed to concrete bed, it could be analyzed at same condition, train, section. Induced electromotive force equation by Faraday's law was updated using Bayesian regression and correlation analysis with calculate value and experiment value. Using the updated model, it could get 40mV per one power generation in ballast bed, and it also could get 4mV per one power generation in concrete bed. If the updated model apply to subway or any train, it will be more effective to get electric power. In addition to that, it will be good to reduce greenhouse gas and to build a green traffic network.

Efficient Correlation Channel Modeling for Transform Domain Wyner-Ziv Video Coding (Transform Domain Wyner-Ziv 비디오 부호를 위한 효과적인 상관 채널 모델링)

  • Oh, Ji-Eun;Jung, Chun-Sung;Kim, Dong-Yoon;Park, Hyun-Wook;Ha, Jeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.23-31
    • /
    • 2010
  • The increasing demands on low-power, and low-complexity video encoder have been motivating extensive research activities on distributed video coding (DVC) in which the encoder compresses frames without utilizing inter-frame statistical correlation. In DVC encoder, contrary to the conventional video encoder, an error control code compresses the video frames by representing the frames in the form of syndrome bits. In the meantime, the DVC decoder generates side information which is modeled as a noisy version of the original video frames, and a decoder of the error-control code corrects the errors in the side information with the syndrome bits. The noisy observation, i.e., the side information can be understood as the output of a virtual channel corresponding to the orignal video frames, and the conditional probability of the virtual channel model is assumed to follow a Laplacian distribution. Thus, performance improvement of DVC systems depends on performances of the error-control code and the optimal reconstruction step in the DVC decoder. In turn, the performances of two constituent blocks are directly related to a better estimation of the parameter of the correlation channel. In this paper, we propose an algorithm to estimate the parameter of the correlation channel and also a low-complexity version of the proposed algorithm. In particular, the proposed algorithm minimizes squared-error of the Laplacian probability distribution and the empirical observations. Finally, we show that the conventional algorithm can be improved by adopting a confidential window. The proposed algorithm results in PSNR gain up to 1.8 dB and 1.1 dB on Mother and Foreman video sequences, respectively.

Reliability Improvement of Automatic Basal Cell Carcinoma Classifier with an Ambiguous Pattern Class (모호한 패턴 클래스 도입을 통한 기저 세포암 분류기의 신뢰도 향상)

  • Park, Aa-Ron;Baek, Seong-Joon;Jung, In-Wook;Song, Min-Gyu;Na, Seung-Yu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raman spectroscopy is known to have strong potential for providing noninvasive dermatological diagnosis of skin cancer. According to the previous work, various well known methods including maximum a posteriori probability (MAP) and multilayer perceptron networks (MLP) showed competitive results. Since even the small errors often leads to a fatal result, we investigated the method that reduces classification error perfectly by screening out some ambiguous patterns. Those ambiguous patterns can be examined by routine biopsy. We incorporated an ambiguous pattern class in MAP, linear classifier using minimum squared error (MSE), MLP and reduced coulomb energy networks (RCE). The experiments involving 216 confocal Raman spectra showed that every methods could perfectly classify BCC by screening out some ambiguous patterns. The best results were obtained with MSE. According to the experimental results, MSE gives perfect classification by screening out 8.8% of test patterns.

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

A study on log diameter classes of Korean softwood log (국산 침엽수 원목의 경급구분 기준에 관한 연구)

  • Park, Jung-Hwan;Kim, Kwang-Mo;Eom, Chang-Deuk;Jung, Doo-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.337-345
    • /
    • 2013
  • Log grading rules are essential tools to ensure the quality of logs in distribution structure. The rules should reflect the long experience and accepted usage practice in the market. A gap between the rules and market should be improved based on analysis of log qualities that produced and market demand. In this study more than ten millions logs which were produced by 5 Regional Forest Services in 2010~2011 period, were analyzed in their qualities including diameters and lengths by species. A proposal was driven to improve the current log grading rules in terms of log diameter classes and length. The followings are the summary of this study. Most of domestic softwood logs are belong to small diameter class of 100~160 mm, which imply the diameter classes of current log grading rules are immoderate. Distributions of log diameter shows distinctive patterns by species, which indicate a necessity of differentiated diameter classes by species in an improved rules. Lengths of logs in productions do not corresponding to the demands and preferences in sawmills. Therefore it is highly recommended to include log length term in an improved log grading system. Based on these findings, 6 log grading systems for 3 species groups of softwood are newly proposed to improve current log grading rules. Limits of log diameter and log length are also proposed for each log grading system.

A Case Study for Simulation of a Debris Flow with DEBRIS-2D at Inje, Korea (DEBRIS-2D를 이용한 인제지역 토석류 산사태 거동모사 사례 연구)

  • Chae, Byung-Gon;Liu, Ko-Fei;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.231-242
    • /
    • 2010
  • In order to assess applicability of debris flow simulation on natural terrain in Korea, this study introduced the DEBRIS-2D program which had been developed by Liu and Huang (2006). For simulation of large debris flows composed of fine and coarse materials, DEBRIS-2D was developed using the constitutive relation proposed by Julien and Lan (1991). Based on the theory of DEBRIS-2D, this study selected a valley where a large debris flow was occurred on July 16th, 2006 at Deoksanri, Inje county, Korea. The simulation results show that all mass were already flowed into the stream at 10 minutes after starting. In 10minutes, the debris flow reached the first geological turn and an open area, resulting in slow velocity and changing its flow direction. After that, debris flow started accelerating again and it reached the village after 40 minutes. The maximum velocity is rather low between 1 m/sec and 2 m/sec. This is the reason why debris flow took 50 minutes to reach the village. The depth change of debris flow shows enormous effect of the valley shape. The simulated result is very similar to what happened in the field. It means that DEBRIS-2D program can be applied to the geologic and topographic conditions in Korea without large modification of analysis algorithm. However, it is necessary to determine optimal reference values of Korean geologic and topographic properties for more reliable simulation of debris flows.

The Extreme Value Analysis of Deepwater Design Wave Height and Wind Velocity off the Southwest Coast (남서 해역 심해 설계 파고 및 풍속의 극치분석)

  • Kim, Kamg-Min;Lee, Joong-Woo;Lee, Hun;Yang, Sang-Yong;Jeong, Young-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.245-251
    • /
    • 2005
  • When we design coastal and harbol facilities deepwater design wave and wind speed are the important design parameters. Especially, the analysis of these informations is a vital step for the point of disaster prevention. In this study, we made and an extreme value analysis using a series of deep water significant wave data arranged in the 16 direction and supplied by KORDI real-time wave information system ,and the wind data gained from Wan-Do whether Station 1978-2003. The probability distributions considered in this characteristic analysis were the Weibull, the Gumbel, the Log-Pearson Type III, the Normal, the Lognormal, and the Gamma distribution. The parameter for each distribution was estimated by three methods, i.e. the method of moments, the maximum likelihood, and the method of probability weight moments. Furthermore, probability distributions for the extreme data had been selected by using Chi-square and Kolmogorov-Smirnov test within significant level of 5%, i,e. 95% reliance level. From this study we found that Gumbel distribution is the most proper model for the deep water design wave height off the southwest coast of Korea. However the result shows that the proper distribution made for the selected site is varied in each extreme data set.

  • PDF

Design and Performance Analysis of a Communication System with AMC and MIMO Mode Selection Scheme (AMC와 MIMO 선택 기법이 결합된 통신 시스템의 설계 및 성능 분석)

  • Lee, Jeong-Hwan;Yoon, Gil-Sang;Cho, In-Sik;Seo, Chang-Woo;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.22-30
    • /
    • 2010
  • This paper proposes a combination system of Adaptive Modulation and Coding (AMC) and Multiple Input Multiple Output (MIMO), which improves the throughput and has a better reliability. In addition, the system includes Precoding, Antenna Subset Selection and MIMO Mode Selection scheme. Finally, we make a performance analysis of the proposed system. The principal environmental parameters for the simulation experiment consist of a frequency non-selective rayleigh fading channel and a Spreading Factor (SF) of 16. Other parameters may be included in order to fulfill the requirements of the HSDP A Standard. The proposed system has a higher throughput and more reliability than the conventional system, which does not include MIMO Mode Selection scheme, Precoding or Antenna Subset Selection. According to the simulation results, the proposed system reaches the maximum throughput at 8dB, presentlng an improvement of 6dB and twice higher throughput, respect to the conventional system. Specifically, at the point of -6dB, the conventional system reaches 2.5Mbps, while the proposed system reaches 6.4Mbps at the same SNR. Also, at the point of 2dB, each system reaches 7.5Mbps (conventional system) and 15.3Mbps (proposed system), with near twice the difference. According to the results exposed above, we can conclude that the system proposed in this paper has, as the greatest contribution, the improvement of the throughput, especially, the average throughput.

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.