• Title/Summary/Keyword: 신뢰성(reliability)

Search Result 8,340, Processing Time 0.034 seconds

다목적실용위성 2호기 신뢰성 및 FMECA

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.44-53
    • /
    • 2003
  • The purpose of reliability prediction is to estimate the basic reliability and basic reliability and mission reliability of system and to make a determination of whether these reliability requirements can be achieved with the proposed design. Also, potential design weakness can be identified through the FMECA process. This technical memo summarizes the KOMPSAT-2 reliability and FMECA analysis results.

  • PDF

Midship Section Design of Ship Structures Based on Reliability Analysis (신뢰성 해석에 기초한 선체 중앙단면 설계)

  • Lee, Joo-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.507-512
    • /
    • 2011
  • This study is concerned with the reliability analysis and its based design of midship section against the ultimate bending strength. Eight bulk carriers and seven oil tankers over 100m length are chosen for the present study. Target reliability indices for the two ship types have been derived based on the results reliability analysis of the present ship models. Reliability-based structural design codes are proposed for use in design of midship section of bulk carriers and oil tankers. The design codes proposed in this study have been successfully applied to re-design of midship section of the present ship types. It has been found that the proposed codes can provide more uniform structural design results.

Reliability Analysis Modeling for LRFD Design of Bridge Abutments (LRFD 설계를 위한 교대의 신뢰성 해석 모델)

  • Eom, Jun-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.5-11
    • /
    • 2014
  • The objective of this paper is to develop a rational reliability analysis procedure for the LRFD design provisions of bridge substructures. A bridge abutments is considered in this study. The reliability analysis is applied to determine the relationship between the major design parameters for bridge abutment and reliability index. The considered load components include dead load, vertical and horizontal earth pressure, earth surcharge, and vehicle live load. Several limit states are considered: foundation bearing capacity, sliding, and overturning. The analysis results show that the most important parameter in the reliability analysis is the effective stress friction angle of the soil. The reliability indices are calculated using Monte Carlo simulations for a selected bridge abutment. The results of the sensitivity analysis indicate that reliability index is most sensitive with regard to resistance factor and horizontal earth pressure factor.

Design of Reliability Qualification Test Based on Performance Distribution at the Earlier Stage (초기 단계의 성능분포를 활용한 신뢰성 인증시험의 설계)

  • Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.131-138
    • /
    • 2012
  • A design of reliability qualification test based on performance distribution is developed. In general, the performance of an item degrades as the time goes by and the failure of an item occurs when the performance degradation reaches the pre-determined critical level. This article considers the reliability qualification test based on a more tightened critical value at the earlier stage to reduce the evaluation testing time and cost. A numerical example is provided to illustrate how to use the developed reliability qualification test.

Reliability growth management for the delayed fixes and development cost in the reliability growth development phase (신뢰성 성장 개발단계에서 지연수정과 개발시험비용을 고려한 신뢰성 성장관리)

  • Kim, Jun-Hong;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.5 no.3
    • /
    • pp.381-391
    • /
    • 2005
  • The level of reliability attained largely depends upon the investment in reliability growth programs during development phase. In order to find the relationship between reliability growth test time and BRTE(basic reliability tasks effectiveness) in a reliability improvement program that minimizes LCC in which contains the reliability growth cost, repair and replacement costs, and spare parts ordering costs in service with given service rate in management policy, the growth rate has been suggested proper LCC versus growth rate. This model employs the reliability growth projection with delayed fixes in avionic equipment based on AMSAA.

  • PDF

Application of Industrial Reliability Technology to Nation Defense Field (민간 신뢰성기술의 국방분야 활용방안)

  • Song, Byeong-Suk;Cho, Jai-Rip
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.61-73
    • /
    • 2008
  • Reliability program in one of the most efficient tools for cost saving during the acquisition process including alternatives for design configurations, operation concepts, maintenance concepts. Industrial reliability centers have already equipped with infrastructure such as reliability standards, reliability apparatus. In this study revitalizing plans are proposed to apply industrial reliability technology to national defense technology.

  • PDF

Experimental and Numerical Analysis of Microvia Reliability for SLP (Substrate Like PCB) (실험 및 수치해석을 이용한 SLP (Substrate Like PCB) 기술에서의 마이크로 비아 신뢰성 연구)

  • Cho, Youngmin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2020
  • Recently, market demands of miniaturization, high interconnection density, and fine pitch of PCBs continuously keep increasing. Therefore, SLP (substrate like PCB) technology using a modified semi additive process (MSAP) has attracted great attention. In particular, SLP technology is essential for the development of high-capacity batteries and 5G technology for smartphones. In this study, the reliability of the microvia of hybrid SLP, which is made of conventional HDI (high density interconnect) and MSAP technologies, was investigated by experimental and numerical analysis. Through thermal cycling reliability test using IST (interconnect stress test) and finite element numerical analysis, the effects of various parameters such as prepreg properties, thickness, number of layers, microvia size, and misalignment on microvia reliability were investigated for optimal design of SLP. As thermal expansion coefficient (CTE) of prepreg decreased, the reliability of microvia increased. The thinner the prepreg thickness, the higher the reliability. Increasing the size of the microvia hole and the pad will alleviate stress and improve reliability. On the other hand, as the number of prepreg layers increased, the reliability of microvia decreased. Also, the larger the misalignment, the lower the reliability. In particular, among these parameters, CTE of prepreg material has the greatest impact on the microvia reliability. The results of numerical stress analysis were in good agreement with the experimental results. As the stress of the microvia decreased, the reliability of the microvia increased. These experimental and numerical results will provide a useful guideline for design and fabrication of SLP substrate.