• Title/Summary/Keyword: 신뢰도공학

Search Result 934, Processing Time 0.03 seconds

Comparison and evaluation of methods for the measurement of total nitrogen in wastewater (고농도 질소함유 폐수의 총질소 분석법 비교·평가)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • The measurement methods for total nitrogen in wastewater containing a high concentration of nitrogen were evaluated. (1) The UV spectrophotometry, (2) reduction-distillation Kjeldahl, (3) total Kjeldahl nitrogen, and (4) ion chromatography methods were applied. The experimental procedure of the UV spectrophotometric method was simple, but it produced large errors deriving from the dilution of samples and calibration standards. While, the reduction-distillation Kjeldahl method didn't need dilution, but the amount of Devarda's alloy and NaOH lead to large errors up to 50 mg/L. The levels of total nitrogen measured by each method were as follows: reduction-distillation Kjeldahl ($568.6{\pm}38.7mg/L$) > UV spectrophotometry ($527.3{\pm}9.6mg/L$) > total Kjeldahl nitrogen method ($494.7{\pm}21.4mg/L$) > ion chromatography method ($417.9{\pm}7.3mg/L$). Therefore, the reduction-distillation Kjeldahl method is preferred for wastewater with the high concentration of nitrogen. Optimal conditions for each experimental procedure, however, are needed to be confirmed, and the Standard Operation Procedure (SOP) for total nitrogen is required for reliable measurements.

Effect of Social Network Service (SNS) Users' Object Relations Factors on User Satisfaction through Pleasure and Self-efficacy (소셜네트워크서비스(SNS) 이용자의 대상관계 요인이 즐거움과 자기효능감을 통해 이용자 만족에 미치는 영향)

  • Chae, Su-in;Choi, Hyo-geun;Kwon, Do-Soon;Park, Dong-cheol
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.1-16
    • /
    • 2022
  • Social network service (SNS) using mobile or web is growing rapidly, and the emergence of various platform services is causing innovative changes in social network service (SNS). This study is to identify the target relation factors of social network users and to empirically study the causal relationship of how much these factors affect user satisfaction through pleasure and self-efficacy. To present an effective and efficient development plan in. In order to empirically verify the research model of this study, a survey was conducted with the general public who had experience using social network services (SNS). Path analysis was performed. As a result, it was possible to verify the correlation of the object relational factors on user satisfaction through pleasure and self-efficacy.First, non-excluded had a significant effect on pleasure, but did not significantly affect self-efficacy. Second, stability attachment did not significantly affect both enjoyment and self-efficacy. Third, social ability did not significantly affect both enjoyment and self-efficacy. Fourth, self-centeredness did not have a significant effect on both enjoyment and self-efficacy. Fifth, pleasure had a significant effect on both self-efficacy and user satisfaction. Sixth, self-efficacy had a significant effect on user satisfaction.

Development of Hazard-Level Forecasting Model using Combined Method of Genetic Algorithm and Artificial Neural Network at Signalized Intersections (유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구)

  • Kim, Joong-Hyo;Shin, Jae-Man;Park, Je-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.351-360
    • /
    • 2010
  • In 2010, the number of registered vehicles reached almost at 17.48 millions in Korea. This dramatic increase of vehicles influenced to increase the number of traffic accidents which is one of the serious social problems and also to soar the personal and economic losses in Korea. Through this research, an enhanced intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network will be developed in order to obtain the important data for developing the countermeasures of traffic accidents and eventually to reduce the traffic accidents in Korea. Firstly, this research has investigated the influencing factors of road geometric features on the traffic volume of each approaching for the intersections where traffic accidents and congestions frequently take place and, a linear regression model of traffic accidents and traffic conflicts were developed by examining the relationship between traffic accidents and traffic conflicts through the statistical significance tests. Secondly, this research also developed an intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network through applying the intersection traffic volume, the road geometric features and the specific variables of traffic conflicts. Lastly, this research found out that the developed model is better than the existed forecasting models in terms of the reliability and accuracy by comparing the actual number of traffic accidents and the predicted number of accidents from the developed model. In conclusion, it is expect that the cost/effectiveness of any traffic safety improvement projects can be maximized if this developed intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network use practically at field in the future.

Development of Traffic Accident Rate to Improve the Reliability of the Valuation of Accident Costs Savings on National Highways (국도 사고비용 산정의 신뢰도 향상을 위한 사고원단위 개선)

  • Wanhyoung Cho;Kijung Kum
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.19-29
    • /
    • 2023
  • The accident rate in South Korea is simply classified according to the road type and the number of lanes, but other countries apply various factors affect accidents. In this study, national highways where accidents occurred were divided into urban, rural, older, and modern roads using TAAS(Traffic Accident Analysis System) data, and a model of accident costs savings is suggested. As a result of analyzing 1,416.2 km, the fatality rate(person/100mil-vehicle·km) was 4.21 for urban-older, 1.37 for urban-modern, 2.18 for rural-older, and 0.99 for rural-modern roads. The rates of urban roads had a higher result than rural. The injury rate(person/100mil-vehicle·km) for urban-older was 182.63, that for urban-modern was 103.42, that for rural-older was 67.44, and that for rural-modern road was 42.96, which showed a similar pattern to fatality rates. Accident rates of a modern road were much lower than the KDI Guideline. The benefit of applying the result of this study was calculated and the valuation of accident costs savings is increased from 0.6% to 14.1%, while B/C is improved from 0.626 to 0.724.

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

Study of Confidence Ranges for Field Phase Difference Measurement Data Collected using Geophones (지오폰을 활용한 현장 위상각차 계측 데이터 신뢰 구간에 관한 기초 연구)

  • Kim, Gunwoong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.41-54
    • /
    • 2024
  • Regular monitoring plays a crucial role in ensuring the safety of geotechnical structures. Currently, nondestructive methods are employed to monitor such structures to minimize the impact, e.g., sensor-based accelerometers, displacement meters, image-based lasers, and drone imaging. These technologies can observe surface changes; however, they frequently suffer difficulties in terms of identifying changes in internal properties. To monitor changes in internal properties, in situ geotechnical investigations can be employed. A nondestructive test that can be used for this purpose is the spectral analysis of surface wave (SASW) test using geophones. The SASW test is a nondestructive method; however, due to the time required for data interpretation and the difficulty in analyzing the data, it is challenging to use the SASW test for monitoring applications that require frequent observations. However, it is possible to apply the first-step analysis, which yields the dispersion curve, for monitoring rather than the complete SASW analysis, which yields the shear wave velocity. Thus, this paper presents a fundamental study on the phase difference that derives the dispersion curve to utilize the SASW test for monitoring. The reliability of each phase difference interval is examined to determine the boundary to the subjected monitor. The study used phase difference data obtained using a geophone from a single-layered, homogeneous ground site to evaluate reliable boundaries. The findings of this study are expected to improve the utility of monitoring by identifying the ideal boundary for phase difference data.

A Method for Extracting Equipment Specifications from Plant Documents and Cross-Validation Approach with Similar Equipment Specifications (플랜트 설비 문서로부터 설비사양 추출 및 유사설비 사양 교차 검증 접근법)

  • Jae Hyun Lee;Seungeon Choi;Hyo Won Suh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.55-68
    • /
    • 2024
  • Plant engineering companies create or refer to requirements documents for each related field, such as plant process/equipment/piping/instrumentation, in different engineering departments. The process-related requirements document includes not only a description of the process but also the requirements of the equipment or related facilities that will operate it. Since the authors and reviewers of the requirements documents are different, there is a possibility that inconsistencies may occur between equipment or parts design specifications described in different requirement documents. Ensuring consistency in these matters can increase the reliability of the overall plant design information. However, the amount of documents and the scattered nature of requirements for a same equipment and parts across different documents make it challenging for engineers to trace and manage requirements. This paper proposes a method to analyze requirement sentences and calculate the similarity of requirement sentences in order to identify semantically identical sentences. To calculate the similarity of requirement sentences, we propose a named entity recognition method to identify compound words for the parts and properties that are semantically central to the requirements. A method to calculate the similarity of the identified compound words for parts and properties is also proposed. The proposed method is explained using sentences in practical documents, and experimental results are described.

Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability (고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측)

  • Han, Heechan;Kang, Narae;Yoon, Jungsoo;Hwang, Seokhwan
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.471-479
    • /
    • 2024
  • Flood damage is becoming more serious due to the heavy rainfall caused by climate change. Physically based hydrological models have been utilized to predict stream water level variability and provide flood forecasting. Recently, hydrological simulations using machine learning and deep learning algorithms based on nonlinear relationships between hydrological data have been getting attention. In this study, the Long Short-Term Memory (LSTM) algorithm is used to predict the water level of the Seomjin River watershed. In addition, Climate Prediction Center morphing method (CMORPH)-based gridded precipitation data is applied as input data for the algorithm to overcome for the limitations of ground data. The water level prediction results of the LSTM algorithm coupling with the CMORPH data showed that the mean CC was 0.98, RMSE was 0.07 m, and NSE was 0.97. It is expected that deep learning and remote data can be used together to overcome for the shortcomings of ground observation data and to obtain reliable prediction results.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).

Quality Evaluation of UAV Images Using Resolution Target (해상도 타겟을 이용한 무인항공영상의 품질 평가)

  • LEE, Jae-One;SUNG, Sang-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.103-113
    • /
    • 2019
  • Spatial resolution is still one of the most important parameters for evaluating image quality. In this study, we propose an approach to evaluate spatial resolution and MTF(Modulation Transfer Function) using bar target and Siemens star chart as a part of quality evaluation for UAV images. To this end, images were taken with a fixed-wing eBee(Canon IXUS) at the flight height of 130m and 260m, and with a rotary-wing GD-800(SONY NEX-5N) at flight height of 130m, with a Phantom 4 pro(FC 6310) at flight height of 90m, respectively. Spatial resolution was measured on orthoimages produced from this data. Results show that the resolution measured on the Siemens star and bar target was accurately degraded in proportion to the flight height regardless of the cameras. In the words, the spatial resolution of images taken at the same altitude of 130m with the eBee(Canon IXUS) and the GD-800(SONY NEX-5N) equipped with different cameras was the same as 4.1cm, and that of the eBee(Canon IXUS) at 260m was 8.0cm. In addition, the resolution measured on the Siemens star was about 1~2cm lower than that of the bar target at every flight height. The general tendency was also found to be proportional to the flight height in the measurement of the ${\sigma}_{MTF}$ from MTF, which simultaneously represents the resolution and contrast information of the image. However, at the same altitude of 130m, the ${\sigma}_{MTF}$ of the GD-800(SONY NEX-5N) is 0.36 and the eBee(Canon IXUS) is 0.59, which shows that the GD-800(SONY NEX-5N) has better camera performance. It is expected that study results will contribute to the analysis of spatial resolution of UAV images and to improve the reliability of quality.