• Title/Summary/Keyword: 신경회로망 추적기

Search Result 18, Processing Time 0.026 seconds

Neuro-controller design for the line of sight stabilization system containing nonlinear friction (비선형 마찰이 존재하는 조준경 안정화 시스템의 신경망 제어기 설계)

  • Jang, Jun-Oh;Jeon, Byung-Gyoon;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • 본 논문에서는 비선형 마찰이 존재하는 조준경 안정화 시스템에 대해서 마찰력 보상과 성능개선을 위한 신경망제어기의 설계방법을 제시한다. 제안한 신경망제어기는 비례, 적분, 진상(PI/LEAD) 제어기와 신경회로망과의 병렬로 구성되며, 제어 목적은 비선형 마찰과 외란이 존재하여도 안정거울의 각속도 추적성능과 안정화 성능의 향상에 있다. 신경회로망의 입력으로 안정거울의 각속도 추적오차와 추적오차의 적분, 제어입력이 필터를 통과한 신호가 사용되며, 신경호로망은 간접학습구조에 의해 학습된다. 조준경 시스템의 비선형 마찰력인 쿨롱마찰력의 크기가 외부환경에 따라 변하는 경우와 시스템으로 외란이 인가되는 경우에 대하여도 제안한 병렬제어기는 기존의 PI/LEAD 제어기보다 추적과 안정화 성능면에서 우수함을 컴퓨터 모의 실험으로 확인한다.

  • PDF

Development of Neural Network Controller for Maximum Power Point Tracking of PV System (PV 시스템의 최대전력점 추적을 위한 신경회로망 제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This paper presents an Neural Network(NN) controller for Maximum Power Point Tracking (MPPT) of PV supplied DC motor. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. Proposed photovoltaic system consists of NN, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an Adaptive control of Neural Network, calculates Converter-Chopping ratio using an Adaptive control of NN. The results of an Adaptive control of NN compared with the results of Converter-Chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks (신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.990-998
    • /
    • 2007
  • Adaptive output feedback control technique using Neural Networks(NN) is proposed for uncertain nonlinear Multi-Input Multi-Output(MIMO) systems. Modified Dynamic Inversion Model(MDIM) is introduced to decouple uncertain nonlinearities from inversion-based control input. MDIM consists of approximated dynamic inversion model and inversion model error. One NN is applied to compensate the MDIM of the system. The output of the NN augments the tracking controller which is based upon a filtered error approximation with online weight adaptation laws which are derived from Lyapunov's direct method to guarantee tracking performance and ultimate boundedness. Several numerical results are illustrated in the simulation of Van der Pol system and unmanned helicopter with model uncertainties.

Neuro-controller for a XY positioning table (XY 테이블의 신경망제어)

  • Jang, Jun Oh
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.375-382
    • /
    • 2004
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neuro-controller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

LM Neural network robot controller for self-navigation (자율 이동이 가능한 LM신경망 로봇 제어기)

  • Yoo, Sung-Goo;Chong, Kil-To;Kim, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.255-256
    • /
    • 2008
  • 미래의 로봇 산업은 기존 자동화 산업 뿐만 아니라 안내, 보안 등의 가정, 공공기관 또는 우주, 심해 등에서 인간을 대신할 대안으로 활용되어질 전망이다. 이는 기존의 단순반복에서 벗어나 자율이동, 자기학습 등이 가능하도록 개발되어야 한다. 본 논문에서는 로봇을 공공기관에서의 안내, 보안 또는 위험현장, 군사용으로 적용하기 위해 필요한 기술인 자율이동시스템을 개발하였다. 로봇이 자율이동하기 위해서는 자기위치추적, 장애물 탐지 및 회피 기술이 필요하다. 이를 위해 초음파센서를 이용해 로봇을 탐지 시스템을 구성하였으며 LM신경회로망 제어기를 사용하여 로봇의 이동을 제어하였다. 또한 시뮬레이션을 통해 장애물 회피능력과 이동성능 결과를 검증하였다.

  • PDF

Tracking Control of an Uncertain Robot via Neural Network (신경회로망을 이용한 불확실한 로봇 추적 제어)

  • Kim, Eun-Tai;Lee, Hee-Jin;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.297-300
    • /
    • 2001
  • 본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경 망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.

  • PDF

Interacting Multiple Model Vehicle-Tracking System Based on Neural Network (신경회로망을 이용한 다중모델 차량추적 시스템)

  • Hwang, Jae-Pil;Park, Seong-Keun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.641-647
    • /
    • 2009
  • In this paper, a new filtering scheme for adaptive cruise control (ACC) system is presented. In the proposed scheme, the identification of the mode of the preceding vehicle is considered as a classification problem and it is done by a neural network classifier. The neural network classifier outputs a posterior probability of the mode of the preceding vehicle and the probability is directly used in the IMM framework. Finally, ten scenarios are made and the proposed NIMM is tested on them to show its validity.

Design of tracking controller Using Artificial Neural Network & comparison with an Optimal Track ing Controller (인공 신경회로망을 이용한 추적 제어기의 구성 및 최적 추적 제어기와의 비교 연구)

  • Park, Young-Moon;Lee, Gue-Won;Choi, Myoen-Song
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.51-53
    • /
    • 1993
  • This paper proposes a design of the tracking controller using artificial neural network and the compare the result with a result of optimal controller. In practical use, conventional Optimal controller has some limits. First, optimal controller can be designed only for linear system. Second, for many systems state observation is difficult or sometimes impossible. But the controller using artificial neural network does not need mathmatical model of the system including state observation, so it can be used for both linear and nonlinear system with no additional cost for nonlinearity. Designed multi layer neural network controller is composed of two parts, feedforward controller gives a steady state input & feedback controller gives transient input via minimizing the quadratic cost function. From the comparison of the results of the simulation of linear & nonlinear plant, the plant controlled by using neural network controller shows the trajectory similar to that of the plant controlled by an optimal controller.

  • PDF

NN Saturation and FL Deadzone Compensation of Robot Systems (로봇 시스템의 신경망 포화 및 퍼지 데드존 보상)

  • Jang, Jun-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.187-192
    • /
    • 2008
  • A saturation and deadzone compensator is designed for robot systems using fuzzy logic (FL) and neural network (NN). The classification property of FL system and the function approximation ability of the NN make them the natural candidate for the rejection of errors induced by the saturation and deadzone. The tuning algorithms are given for the fuzzy logic parameters and the NN weights, so that the saturation and deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The NN saturation and FL deadzone compensator is simulated on a robot system to show its efficacy.

  • PDF

A study on the Photovoltaic Tracker System Using Method of Intelligent control (지능형 제어기법을 이용한 태양추적시스템에 관한 연구)

  • Kim, Pyoung-Ho;Baek, Hyung-Lae;Cho, Geum-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • In this paper, 150W photovoltaic system using neural network tracker is proposed, the system designed as the normal line of the solar cell always runs parallel the ray of the sun. This design can minimize the cosine loss of the system output results of solar cell are sensitive to the change of weather and insolation condition don't react rapidly to parameter condition change such as system circumstance and deterioration. To achieve precise operation of photovoltaic tracker system using method of intelligent control, Neural Network is used in the design of the photovoltaic tracker system drive. The control performance of this system drive influenced by the environment parameter such as weather condition and motor parameter variations. we used synchronous motor in this tracker and the experimental results show that the fixing system shows 10,159[Wh] and tracking system shows 12,360[Wh] electricity.