• Title/Summary/Keyword: 신경아교세포

Search Result 59, Processing Time 0.024 seconds

Cyanate Induces Apoptosis of Rat Glioma Cell Line (시안산에 의한 신경아교종세포의 자멸사)

  • Choi, Hye-Jung;Lee, Sang-Hee
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • The patient with end-stage renal disease show several nervous complications. The factors contributing to the nervous complications are still incompletely characterized. Cyanate, known as one of the uremic toxins, is derived spontaneously from urea. To investigate the mechanism of cyanate-induced effect on C6 glioma cells, the glioma cells were treated with 0, 1, 5, 10, 20 and 40 mM cyanate. There was a dose-dependent decrease in cell viability and the decreased number of cell was observed in glioma cells by treatment with cyanate. Western blot showed the down- regulation of procaspase-3, which means up-regulation of caspase-3, and the up-regulation of caspase-8, but the down-regulation by cyanate. In addition, cDNA microarray showed 934 down-regulated genes and 165 up-regulated genes on 1,099 genes in cyanate treated group. Treatment with cyanate led to 16 down-regulated genes and 6 up-regulated genes on apoptosis category, and especially heat shock 70 kD protein 1A gene on the category of apoptosis was significantly up-regulated. These results suggest that cyanate can induce apoptosis through caspase-8 and caspase-3 in glioma cells and decrease of gene expression including apoptosis category in glioma cells. These effects of cyanate may play a role in the nervous complications of patient with end-stage renal disease.

Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood (인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화)

  • Kam, Kyung-Yoon;Kang, Ji-Hye;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.235-243
    • /
    • 2007
  • Human umbilical cord blood(HUCB) contains a rich source of hematopoietic stem cells, mesenchymal stem cells and endothelial cell precursors. Mesenchymal stem cells(MSCs) in HUCB are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. We studied on transdifferentiation-promoting conditions in neural cells and cholinergic neuron induction of HUCB-derived MSCs. Neural differentiation was induced by addingdimethyl sulphoxide(DMSO) and butylated hydroxyanisole(BHA) in Dulbeco's Modified Essential Medium(DMEM) and fetal bovine serum(FBS). Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor(bFGF), retinoic acid(RA) and sonic hedgehog(Shh). MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including $\beta$-tubulin III, GFAP and MBP, was markedly elevated during this acute differentiation. The differentiation rate was about $32.3{\pm}2.9%$ for $\beta$-tubulin III-positive cells, $11.0{\pm}0.9%$ for GFAP, and $9.4{\pm}1.0%$ for Gal-C. HUCB-MSCs treated combinatorially with bFGF, RA and Shh were differentiated into cholinergic neurons. After cholinergic neuronal differentiation, the $\beta$-tubulin III-positive cell population of total cells was $31.3{\pm}3.2%$ and of differentiated neuronal population, $70.0{\pm}7.8%$ was ChAT-positive showing 3 folds higher in cholinergic population than neural induction. Conclusively, HUCB-derived MSCs can be differentiated into neural and cholinergic neurons and these findings suggest that HUCB are alternative cell source of treatment for neurodegenerative diseases such as Alzheimer's disease.

  • PDF

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF

Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine (L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진)

  • Park, Ki-Youb;Kim, Man Su
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.108-118
    • /
    • 2022
  • The subventricular zone (SVZ) in the brain contains neural stem cells (NSCs) that generate new neurons throughout one's lifetime. Many extracellular and intracellular factors that affect cell proliferation and neuronal differentiation of NSCs are already well-known. Recently, L-type calcium channels have been reported to regulate neural development and are present in NSCs, differentiating neuroblasts, and mature neurons in the SVZ. Nifedipine, a blocker of L-type calcium channels, has been long used as a therapeutic drug for hypertension. However, studies on the use of nifedipine to inhibit L-type calcium channels of NSCs are lacking. Herein, we treated NSCs cultured from mouse postnatal SVZ with nifedipine during neuronal differentiation. Nifedipine increased the number of Tuj1-positive neurons but did not significantly change the number of Olig2-positive oligodendrocytes. Nifedipine increased cell division during early differentiation, which was detected using the 5-ethynyl-2'-deoxyuridine incorporation assay and immunocytochemistry assessment by staining the cells with phosphorylated histone H3, a mitosis marker. Nifedipine increased the transcription of Dlx2, a neurogenic transcription factor, and the level of Mash1, a marker for early neurogenesis. In addition to nifedipine, verapamil, which is also an L-type calcium channel blocker, showed a slight increase in neurogenesis, but its statistical significance was very low. In contrast, pimozide, a T-type calcium channel blocker, did not affect neurogenesis, although T-type calcium channel genes Cav3.1, Cav3.2, and Cav3.3 were expressed. In summary, nifedipine might promote the neuronal fate of NSCs during early differentiation and calcium signaling through L-type calcium channels might be involved in neuronal differentiation, especially during the early stages of differentiation.

Modified Adenovirus Mediated Gene Transfer to Neuronal Precursor Cells (Transferrine peptide ligand로 개량된 아데노바이러스를 이용한 신경전구세포로의 유전자 전달 효율 조사)

  • Joung, In-Sil
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.73-76
    • /
    • 2006
  • Neuronal precursor cells may provide for cell replacement or gene delivery vehicles in neurodegenerative disease therapy. One impediment to treating neuronal diseases is finding ways to introduce genes into neurons effectively. It is shown here that fiber-modified adenovirus vector delivered gene to neuronal precursor as well as differentiated neuronal cells more efficiently than first-generation adenoviral vector. Moreover, fiber-modified adenoviral vector transduced precursor cells retained the potential for differentiation into neurons and glia in vitro. These results show the potential of modified adenoviral vector in the improved gene delivery to neurons in direct gene therapy protocols. In addition it holds promise for the use of genetically manipulated stem cells for the therapy of neuronal diseases.

Expression of Myelin-Associated Glycoprotein (MAG) in the Aged Rat Cerebrum (노화된 흰쥐대뇌 에서 Myelin-Associated Glycoprotein (MAG)의 발현)

  • Cho, Ik-Hyun;Park, Chang-Hyun;Lee, Jong-Hwan;Bae, Chun-Sik;Ye, Sang-Kyu;Lee, Beob-Yi;Park, Seung-Hwa;Koh, Ki-Seok;Kim, Jin-Suk;Chang, Byung-Joon
    • Applied Microscopy
    • /
    • v.36 no.2
    • /
    • pp.101-108
    • /
    • 2006
  • Myelin-associated glycoprotein (MAG) has been known to have a crucial role to the formation of myelin sheath during initial stage of myelination. In the present study, we investigated the aging-related expressional changes of MAG in the rat cerebrum. MAG expression was markedly decreased in cerebral cortex by aging. In the adult rat cerebrum, MAG-positive rolls were process-bearing cells with large nucleus, and extensively distributed. However, in the aged rat brain, MAG-positive cells showed small and round morphology with little cytoplasm and few processes. MAG was co-expressed with galatocerebroside, but not with Iba-1, or GFAP. These results suggest that the expressional change of MAG-positive cells is associated with degeneration of oligodendrocyte-myelin system by aging, and that MAG is likely to be a reliable marker for the mature oligodendrocytes in the aged rat brain.

Comparative study of antioxidant and anti-neuroinflammatory activity of leaf extracts of three different species of Bamboos in different extraction solvents containing caffeic acid, p-coumaric acid and tricin (왕대, 조릿대, 오죽의 추출 용매에 따른 항산화, 신경염증제어 활성 및 지표성분 caffeic acid, p-coumaric acid, tricin의 함량 비교)

  • Kim, Yon-Suk;Cho, Duk-Yeon;Kim, Mikyung;Choi, Dong-Kug
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.296-303
    • /
    • 2021
  • The antioxidant and anti-neuroinflammatory activities of water, 30, 70, and 100% ethanol extracts of leaves of three different species of bamboo (Phyllostachys nigra, P. bambusoides, and Sasa borealis) were investigated. The levels of total polyphenol and flavonoid were measured, and antioxidant activity was evaluated using various antioxidant assays (DPPH, ABTS, and FRAP). Lipopolysaccharide (LPS)-induced BV2 microglial cell activation was used to evaluate the anti-neuroinflammatory properties of the bamboo leaf extracts. Treatment with both aqueous and ethanolic extracts showed no cytotoxicity in BV-2 microglial cells. Pre-treatment of BV-2 cells with bamboo leaf extracts significantly inhibited LPS-induced excessive production of nitric oxide in a dose-dependent manner. Moreover, phytochemical analysis based on the extraction solvent showed that caffeic acid, p-coumaric acid, and tricin are the principal constituents of all three bamboo leaf extracts. Therefore, our findings suggest that bamboo leaf extract contains potent antioxidants and anti-neuroinflammatory compounds that can be used as potential therapeutic agents for the treat neuroinflammatory diseases.

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Baek, Minhee;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1078-1084
    • /
    • 2020
  • Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia (BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과)

  • Seo, Minchul;Shin, Yong Pyo;Lee, Hwa Jeong;Baek, Minhee;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.999-1006
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.

Case Study of Gait Training Using Rhythmic Auditory Stimulation(RAS) for a Pediatric Patient with Cerebellar Astrocytomas (리듬청각자극(RAS)을 사용한 소뇌 별아교세포종(CA) 환아의 보행훈련 사례 연구)

  • Kim, Soo Ji;Cho, Sung Rae;Oh, Soo-Jin;Kwak, Eunmi Emily
    • Journal of Music and Human Behavior
    • /
    • v.7 no.2
    • /
    • pp.65-81
    • /
    • 2010
  • This single case study is to examine the gait parameter changes of a 12-year old patient with Cerebellar Astrocytomas using RAS in gait training program. Kinematic and temporospatial changes were analyzed using VICON 370 Motion Analysis System. A total of nine RAS gait training sessions was provided and each training program took 30 minutes. Gait analysis revealed that the patient showed improvement in cadence, velocity, stride length, and step length and improved the range of joint movements by showing gait patterns similar to normal distribution from a pathological pattern. This study showed possibilities to apply the RAS technique to the various population including clients with cerebellum damaged; however more further research should be done in this area.

  • PDF