Expression of Myelin-Associated Glycoprotein (MAG) in the Aged Rat Cerebrum

노화된 흰쥐대뇌 에서 Myelin-Associated Glycoprotein (MAG)의 발현

  • Cho, Ik-Hyun (College of Veterinary Medicine, Konkuk University) ;
  • Park, Chang-Hyun (Electron Microscope Facility, College of Medicine, Korea University) ;
  • Lee, Jong-Hwan (College of Veterinary Medicine, Konkuk University) ;
  • Bae, Chun-Sik (College of Veterinary Medicine and Biotechnology Research Institutes, Chonnam National University) ;
  • Ye, Sang-Kyu (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Lee, Beob-Yi (Department of Anatomy, College of Medicine, Konkuk University) ;
  • Park, Seung-Hwa (Department of Anatomy, College of Medicine, Konkuk University) ;
  • Koh, Ki-Seok (Department of Anatomy, College of Medicine, Konkuk University) ;
  • Kim, Jin-Suk (College of Veterinary Medicine, Konkuk University) ;
  • Chang, Byung-Joon (College of Veterinary Medicine, Konkuk University)
  • 조익현 (건국대학교 수의과대학) ;
  • 박창현 (고려대학교 의과대학 전자현미경실) ;
  • 이종환 (건국대학교 수의과대학) ;
  • 배춘식 (전남대학교 수의과대학 및 생물공학연구소) ;
  • 예상규 (서울대학교 의과대학 약리학교실) ;
  • 이법이 (건국대학교 의과대학 해부학교실) ;
  • 박승화 (건국대학교 의과대학 해부학교실) ;
  • 고기석 (건국대학교 의과대학 해부학교실) ;
  • 김진석 (건국대학교 수의과대학) ;
  • 장병준 (건국대학교 수의과대학)
  • Published : 2006.06.30

Abstract

Myelin-associated glycoprotein (MAG) has been known to have a crucial role to the formation of myelin sheath during initial stage of myelination. In the present study, we investigated the aging-related expressional changes of MAG in the rat cerebrum. MAG expression was markedly decreased in cerebral cortex by aging. In the adult rat cerebrum, MAG-positive rolls were process-bearing cells with large nucleus, and extensively distributed. However, in the aged rat brain, MAG-positive cells showed small and round morphology with little cytoplasm and few processes. MAG was co-expressed with galatocerebroside, but not with Iba-1, or GFAP. These results suggest that the expressional change of MAG-positive cells is associated with degeneration of oligodendrocyte-myelin system by aging, and that MAG is likely to be a reliable marker for the mature oligodendrocytes in the aged rat brain.

신경섬유의 수초화의 초기단계에 있어서 마이엘린의 형성에 중요한 역할을 한다고 알려져 있는 마이엘린연합 당단백질(MAG)이 정상적으로 노화된 흰쥐의 대뇌에서도 발현되는지를 알아보고자 하였다. 성숙흰쥐의 대뇌피질에서 MAG가 높은 농도로 발현되었으나 노화흰쥐의 대뇌피질에서는 유의하게 감소하였다. 대뇌에서 MAG면역양성반응 세포는 두 성숙흰쥐의 대뇌피질에서 주로 돌기를 가진 큰 세포였으며 노화흰쥐의 경우에는 주로 세포질과 돌기가 거의 없는 작고 둥근 세포였다. 성숙흰쥐의 백색질내 신경로에서 MAG면역양성 반응 세포는 많이 관찰되었으나 노화흰쥐에서는 거의 관찰되지 않았다. MAG면역반응은 galatocerebroside의 면역반응과 일치하였다. 이상의 결과로부터 노화에 의한 MAG 발현의 변화는 노화시에 나타나는 희소돌기아교세포와 마이엘린 퇴행성 변화와 관계가 있을 뿐만이 아니라 MAG는 노화시에 희소돌기아교세포의 기능 연구를 위한 적절한 marker로서 사용될 수 있음을 의미하며 앞으로 이에 대한 자세한 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Arquint M, Roder J, Chia LS, Down J, Wilkinson D, Bayley H, Braun P, Dunn R: Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Nat Acad Sci U.S.A. 84 : 600-604, 1987
  2. Bartsch U: Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein. J Neurocyto 25 : 303-313, 1996 https://doi.org/10.1007/BF02284804
  3. Bartsch U, Kirchhoff F, Schachner M: Immunohistological localization of the adhesion molecules L1, N-CAM and MAG in the developing and adult optic nerve of mice. J Com Neurol 284 : 451-462, 1989 https://doi.org/10.1002/cne.902840310
  4. Coffey JC, McDermott KW: The regional distribution of myelin oligodendrocyte glycoprotein (MOG) in the developing rat CNS: an in vivo immunohistochemical study. J Neurocytol 26(3) : 149-161, 1997 https://doi.org/10.1023/A:1018579912831
  5. Itoyama Y, Sternberger NH, Webster H de F, Quarles RH, Cohen SR, Richardson EP Jr: Immunocytochemical observation on the distribution of myelin-associated glycoprotein and myelin basic protein in multiple sclerosis lesions. Ann Neurol 7 : 167-177, 1980 https://doi.org/10.1002/ana.410070212
  6. Jordan CA, Friedrich VL, Godfraind C, Cardellechio CB, Holmes KV, Dubois-Dalcq M: Expression of viral and myelin gene transcripts in a murine CNS demyelinating disease caused by a coronavirus. Glia 2(5) : 318-329, 1989 https://doi.org/10.1002/glia.440020505
  7. Kwiecien JM, O'Connor LT, Goetz BD, Delaney KH, Fletch AL, Duncan ID: Morphological and morphometric studies of the dysmyelinating mutant, the Long Evans shaker rat. J Neurocytoi 27(8) : 581-591, 1988
  8. Lassmann H, Bartsch U, Montag K, Schachner M: Dying- Back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19 : 104-110, 1997 https://doi.org/10.1002/(SICI)1098-1136(199702)19:2<104::AID-GLIA2>3.0.CO;2-0
  9. Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Bluthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave K-A, Zielasek J, Toyka KV, Lipp HP, Schachner M: Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13 : 229-246, 1994 https://doi.org/10.1016/0896-6273(94)90472-3
  10. Montague P, Kirkham D, McCallion AS, Davies RW, Kennedy PG, Klugmann M, Nave K, Griffiths IR: Reduced levels of a specific myelin-associated oligodendrocytic basic protein isoform in shiverer myelin. Dev Neurosci 21(1) : 36-42, 1999 https://doi.org/10.1159/000017364
  11. Peters A: Age-related changes in oligodendrocytes in monkey cerebral cortex. J Comp Neurol 371 : 153-163, 1996 https://doi.org/10.1002/(SICI)1096-9861(19960715)371:1<153::AID-CNE9>3.0.CO;2-2
  12. Peters A: Structural changes that occur during normal aging of primate cerebral hemispheres. Neurosci Biobehav Rev 26(7) : 733-741, 2002 https://doi.org/10.1016/S0149-7634(02)00060-X
  13. Peters A, Moss MB, Sethares C: Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol 419(3) : 364-376, 2000 https://doi.org/10.1002/(SICI)1096-9861(20000410)419:3<364::AID-CNE8>3.0.CO;2-R
  14. Peters A, Sethares C, Killiany RJ: Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J Comp Neurol 435(2) : 241-248, 2001 https://doi.org/10.1002/cne.1205
  15. Quarles RH: Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci 59(11) : 1851-1871, 2002 https://doi.org/10.1007/PL00012510
  16. Rodriguez M, Prayoonwiwat N, Howe C, Sanborn K: Proteolipid protein gene expression in demyelination and remyelination of the central nervous system: a model for multiple sclerosis. J Neuropathol Exp Neurol 53(2) : 136-143, 1994 https://doi.org/10.1097/00005072-199403000-00004
  17. Schachner M, Bartsch U: Multiple functions of the myelinassociated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29 : 154-165, 2000 https://doi.org/10.1002/(SICI)1098-1136(20000115)29:2<154::AID-GLIA9>3.0.CO;2-3
  18. Scolding NJ, Frith S, Linington C, Morgan BP, Campbell AK, Compston DA: Myelin-oligodendrocyte glycoprotein (MOG) is a surface marker of oligodendrocyte maturation J Neuroimmunol 22(3) : 169-176, 1989 https://doi.org/10.1016/0165-5728(89)90014-3
  19. Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR: Age dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 84(1) : 157-168, 2003 https://doi.org/10.1046/j.1471-4159.2003.01541.x
  20. Trapp BD, Andrews SB, Cootauco C, Quarles RH: The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 109 : 2417-2426, 1989 https://doi.org/10.1083/jcb.109.5.2417
  21. Weiss MD, Hammer J, Quarles RH: Oligodendrocytes in aging mice lacking myelin-associated glycoprotein are dystrophic but not apoptotic. J Neurosci Re 62(6) : 772-780, 2000 https://doi.org/10.1002/1097-4547(20001215)62:6<772::AID-JNR3>3.0.CO;2-X
  22. Wolswijk G: Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123 :105-115, 2000 https://doi.org/10.1093/brain/123.1.105