• Title/Summary/Keyword: 식생 캐노피

Search Result 14, Processing Time 0.028 seconds

Role of Atmospheric Turbulences and Energy Balances in the Atmospheric Surface Layer (접지층에서 대기난류의 역할과 에너지 평형)

  • Kwon, Byung-Hyuk;Kim, Geun-Hoi;Kim, Kwang-Ho;Kang, Dong-Hwan
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • Heat energy exchange is very important processes in the coastal wetland ecosystems. We observed and analyzed the net radiation flux, the sensible heat flux, the latent heat flux and the soil heat flux, which are balanced in the heat energy balance, over a reclaimed land covered with reeds at Goheung, Jeonllanamdo where is horizontally plane. The atmospheric turbulence had been measured in order to estimate the heat transfer during 5 intensive observation periods (IOPs). It was considered that the soil consists of water, fine particles, and vegetation canopy that changes color and density according to the season. We examined the characteristics of the heat flux and the vegetation effect on the air temperature control. It was noted that the heat was transported mainly by latent heat flux in the summer season and the vegetation canopy decreased the daily temperature range due to the heat storage. The air temperature was lower at the IOPs site than near urban area. This showed that the coastal wetland covered with the vegetation control the thermal environment.

  • PDF

Hydrophysical effect of vegetation cover factors on soil erosion (토양침식에 대한 식생피복 인자의 수문물리적 영향)

  • Seung Sook Shin;Sang Deog Park;Sang Jin Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.343-343
    • /
    • 2023
  • 식생피복(Vegetation cover)은 대기 중의 강우와 토양 사이에서 침식으로부터 표토를 보호하는 역할을 한다. 자유 낙하하는 강우의 물방울은 식생을 통과하면서 차단(interception), 수관통과(throughfall), 수간유하(stemflow)의 형태로 변화한다. 식생은 강우입자의 운동에너지와 수량을 감소시키고, 지표면에 도달하는 시간을 지연시킴에 따라 지표유출(overland flow) 저감에 기여한다. 유출수의 흐름과정에서 식물의 줄기, 낙엽, 뿌리 등은 유속을 감소시키는 장애물로 작용하여 궁극적으로 토양침식은 감소한다. 토양침식은 식생피복이 증가함에 따라 일반적으로 감소하며, 지수함수의 관계를 갖는다. 식생의 종류와 구조 그리고 잎의 모양 등에 따라 수문물리적인 반응이 달라진다. 캐노피를 갖는 지상식물(canopy cover plant)은 물방울의 운동에너지를 갖는 반면, 지피식물(ground cover plant)은 낙하고가 작기 때문에 운동에너지는 적으며, 특히 낙엽층은 지표면을 보호하여 토양침식의 저감효과가 더욱 크다. 산불지역의 식생피복에 따른 토양침식 측정 자료에 따르면, 강우운동에너지는 식생피복이 증가함에 따라 지상피복(canopy cover)에 의한 감소보다는 지면피복(ground cover)과 낙엽피복(litter cover)에 의한 감소효과가 상대적으로 컸다. 식생피복에 의해 차단되는 강우의 손실량보다 침투량 증가에 의한 손실량이 상대적으로 많았다. 낙엽피복에 대한 강우모의 실험 결과에 따르면, 낙엽의 피복율이 증가함에 따라 지수적으로 토양침식량은 감소하였다. 낙엽 피복율의 40% 이상은 토양침식량을 현격이 감소시킨 반면, 피복율의 70% 이상은 지표유출량을 현저히 감소시켰다. 낙엽 피복율이 70%이상이면, 유출계수가 33%가 감소하였으나, 토양침식민감도는 94%로 크게 감소하였다.

  • PDF

Estimation of Vegetation for Chinese Cabbage Using Hyperspectral Imagery (초분광 영상을 이용한 배추의 생육 추정)

  • Kim, Won Jun;Kang, Ye Seong;Kim, Seong Heon;Kang, Jeong Gyun;Jun, Sae Rom;sarkar, Tapash Kumar;Ryu, Chan Seok
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.40-40
    • /
    • 2017
  • 본 연구는 빛의 파장대가 넓어 보다 다양한 접근과 검출이 가능한 초분광 카메라 (VNIR spectral camera PS, SPECIN Filand)를 이용하여 정식시기가 다른 배추를 생육단계별로 영상을 취득한 후 배추 캐노피의 전 파장 (400~1000nm)으로 생육 추정모델을 개발하기 위해 수행하였다. 정식시기가 다른 배추를 생육단계별로 초분광 카메라로 영상을 취득한 후 취득된 영상 ($348{\times}1040$)을 ENVI (ver. 5.2, Exelis Visual Information Solutions, USA) 프로그램을 이용하여 식생지수 NDVI로 작물과 배경을 구분하였다. 배추 캐노피 영역에 전 파장을 산출한 후 반사판 영역의 전 파장을 이용하여 광 보정된 반사율을 산출하였다. 통계 프로그램인 R Project (ver.3.3.3, Development Core Team, Vienna, Austria)를 이용하여 배추의 반사율과 계측한 생육 정보를 PLSR (Partial least squares regression) 분석하여 정확도($R^2$) 및 정밀도 (RMSE [g,cm,count], RE [%])로 나타내었고 그 모델은 full-cross validation (FV) 하여 타당성을 검증하였다. 정식시기가 다른 배추의 모든 생육단계의 생육정보를 이용하여 PLSR (Partial least squares regression) 결과 엽장을 추정한 모델의 $R^2$는 84% 이상의 정확도와 RMSE 3.2cm 이하의 좋은 정밀도를 보였다. 엽폭을 추정한 모델의 $R^2$는 73% 이상의 정확도와 RMSE 3.5cm 이하의 정밀도를 보였고 엽수를 추정한 모델의 $R^2$는 93% 이상의 정확도와 RMSE 6.3Count 이하의 정밀도로 보여 캐노피의 전 파장을 이용해 생육을 추정하는 것이 가능하다고 판단되었으며 이 모델들의 타당성 검증에서도 좋은 정확도와 정밀도를 보였다. 그러나 배추의 중요한 생육인자 중 생체중을 추정한 모델의 $R^2$는 89% 이상으로 정확도가 높았으나 RMSE 571.1g 이하로 낮은 정밀도를 보여 생체중을 정확히 추정하기 어려웠다. 따라서 다른 통계분석방법으로 전 파장과 생육정보를 분석하거나 특정 밴드를 선택하여 산출한 식생지수를 이용한 추정 모델의 개발을 통하여 오차를 개선할 필요가 있다고 사료된다. 추후 반복 실험하여 분석한 추정 모델과 비교 분석하여 다양한 환경 및 생물 조건에 범용성을 가진 모델을 개발할 필요가 있다.

  • PDF

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds (3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현)

  • Ahn, Myeonghui;Jang, Eun-kyung;Bae, Inhyeok;Ji, Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.571-581
    • /
    • 2020
  • Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

A water stress evaluation over forest canopy using NDWI in Korean peninsula (NDWI를 활용한 한반도 지역의 산림 캐노피에 대한 water stress 평가)

  • Seong, Nohun;Seo, Minji;Lee, Kyeong-Sang;Lee, Changsuk;Kim, Hyunji;Choi, Sungwon;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • Leaf water content is one of important indicators that shows states of vegetation. It is important to monitor vegetation water content using remote sensing for forest management. In this study, we investigated the degree of water stress in Korean peninsula with Normalized Difference Water Index (NDWI) to study the water content of vegetation canopy. We calculated the NDWI using SPOT/VEGETATION S10 channel data over forest from 1999 to 2013. We calculated Simple Moving Average (SMA) to remove temporal noises of NDWI in time series, and used standardized anomaly to investigate temporal changes. We classified the NDWI anomalies into three scales (low, moderate, and high) in order to monitor intuitively. We also investigated suitability of the NDWI as an evaluation criterion about water stress of vegetation canopy by comparing and verifying forest fires damaged area over 150 ha. Consequently, huge forest fire occurred 24 times during the study period. Also, negative anomalies appeared in every forest fire location and their neighboring areas. In particular, we found huge forest fires where NDWI anomalies were in 'high' scale.

Estimation Method of Evapotranspiration over Goheung bay Wetland (고흥만 습지에서 증발산량의 산출 방법)

  • KWON, Byung Hyuk;KIM, Dong Su;KIM, Geun Hoi;KANG, Dong Hwan
    • Journal of Wetlands Research
    • /
    • v.10 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • Evapotranspiration is an important factor in the energy interaction process between the surface and the air. Over a vegetable canopy, evapotranspiration was investigated by measuring the sensible heat flux, the soil heat flux and the net radiation flux. Evapotranspiration based on routine AWS data is in good agreement with that estimated from the energy balance equation except for weak wind shear less than $1s^{-1}$ and a cloudy period. Soil heat flux can be approximately to 10% of net radiation flux at the lower layer. When the slope of the saturation vapor pressure versus temperature curve ($de_s/dT$) is approximated to 1.5, the evapotranspiration can be described in function of the net radiation energy flux over Goheung bay wetland covered with the vegetable canopy, reeds.

  • PDF

A Study on Computer Simulation to Investigate Correlations between Temperature Controlling Effect of Green Roof System and the Photovoltaic Power Generation Efficiency (옥상녹화시스템의 기온조절효과와 태양광발전효율간의 상호연관성 규명을 위한 전산해석연구)

  • Kim, Tae Han;Park, Sung Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.70-79
    • /
    • 2013
  • These day cities experience serious climatic changes due to environmental load caused by disturbance in the circulation systems of water resources and energy. As technological improvement to respond to various climatic changes and disasters are also requested in the field of construction, inter-disciplinary studies linked to the establishment of sustainable environmental control and energy systems is required in a consilient perspective. This study aims to infer correlations in the impact of environmental changes caused by rooftop greening system on the photovoltaic power generation efficiency through computer simulation in an integrated perspective. By doing so, it seeks to provide basic study for developing a photovoltaic system integrated with building revegetation that is sustainable in environmental and resource aspects. A simulation showed that, in the case of sunshine hours in June, the green surface indicated temperature lowering effects of $9.19^{\circ}C$ on average compared to the non-green surface and temperature was $9.81^{\circ}C$ lower. Due to such greening effects, at the highest sunlight timepoint in June, Pmpp improved 119W and heat loss rate dropped 7.8%.

Measurements of Isoprene and Monoterpenes at Mt. Taehwa and Estimation of Their Emissions (경기도 태화산에서 isoprene과 monoterpenes 측정 및 배출량 산정)

  • Kim, Hakyoung;Lee, Meehye;Kim, Saewung;Guenther, Alex.B.;Park, Jungmin;Cho, Gangnam;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.217-226
    • /
    • 2015
  • To investigate the distributions of BVOCs (Biogenic Volatile Organic Compounds) from mountain near mega city and their role in forest atmospheric, BVOCs and their oxidized species were measured at a 41 m tower in Mt. Taehwa during May, June and August 2013. A proton transfer reaction-mass spectrometer (PTR-MS) was used to quantify isoprene and monoterpenes. In conjunction with BVOCs, $O_3$, meteorological parameters, PAR (Photosynthetically Active Radiation) and LAI (Leaf Area Index) were measured. The average concentrations of isoprene and monoterpenes were 0.71 ppbv and 0.17 ppbv, respectively. BVOCs showed higher concentrations in the early summer (June) compared to the late summer (August). Isoprene started increasing at 2 PM and reached the maximum concentration around 5 PM. In contrast, monoterpenes concentrations began to increase 4 PM and stayed high at night. The $O_3$ maximum was generally found at 3 PM and remained high until 5 PM or later, which was concurrent with the enhancement of $O_3$. The concentrations of BVOCs were higher below canopy (18 m) than above canopy, which indicated these species were produced by trees. At night, monoterpenes concentrations were negatively correlated with these of $O_3$ below canopy. Using MEGAN (Model of Emissions of Gases and Aerosols from Nature), the emissions of isoprene and monoterpenes were estimated at 1.1 ton/year and 0.9 ton/year, respectively at Mt. Taehwa.