DOI QR코드

DOI QR Code

Measurements of Isoprene and Monoterpenes at Mt. Taehwa and Estimation of Their Emissions

경기도 태화산에서 isoprene과 monoterpenes 측정 및 배출량 산정

  • Kim, Hakyoung (Department of Earth and Environmental Science, Korea University) ;
  • Lee, Meehye (Department of Earth and Environmental Science, Korea University) ;
  • Kim, Saewung (University of California at Irvine, Department of Earth System Sciences) ;
  • Guenther, Alex.B. (University of California at Irvine, Department of Earth System Sciences) ;
  • Park, Jungmin (National Institute of Environmental Research) ;
  • Cho, Gangnam (National Institute of Environmental Research) ;
  • Kim, Hyun Seok (National Center for AgroMeteorology)
  • 김학영 (고려대학교 대학원 지구환경과학과) ;
  • 이미혜 (고려대학교 대학원 지구환경과학과) ;
  • 김세웅 (캘리포니아 대학교 어바인 지구시스템과학과) ;
  • 알렉스 B. 겐터 (캘리포니아 대학교 어바인 지구시스템과학과) ;
  • 박정민 (국립환경과학원 대기환경과) ;
  • 조강남 (국립환경과학원 대기환경과) ;
  • 김현석 (국가농림기상센터)
  • Received : 2015.02.09
  • Accepted : 2015.09.07
  • Published : 2015.09.30

Abstract

To investigate the distributions of BVOCs (Biogenic Volatile Organic Compounds) from mountain near mega city and their role in forest atmospheric, BVOCs and their oxidized species were measured at a 41 m tower in Mt. Taehwa during May, June and August 2013. A proton transfer reaction-mass spectrometer (PTR-MS) was used to quantify isoprene and monoterpenes. In conjunction with BVOCs, $O_3$, meteorological parameters, PAR (Photosynthetically Active Radiation) and LAI (Leaf Area Index) were measured. The average concentrations of isoprene and monoterpenes were 0.71 ppbv and 0.17 ppbv, respectively. BVOCs showed higher concentrations in the early summer (June) compared to the late summer (August). Isoprene started increasing at 2 PM and reached the maximum concentration around 5 PM. In contrast, monoterpenes concentrations began to increase 4 PM and stayed high at night. The $O_3$ maximum was generally found at 3 PM and remained high until 5 PM or later, which was concurrent with the enhancement of $O_3$. The concentrations of BVOCs were higher below canopy (18 m) than above canopy, which indicated these species were produced by trees. At night, monoterpenes concentrations were negatively correlated with these of $O_3$ below canopy. Using MEGAN (Model of Emissions of Gases and Aerosols from Nature), the emissions of isoprene and monoterpenes were estimated at 1.1 ton/year and 0.9 ton/year, respectively at Mt. Taehwa.

경기도 태화산 서울대학술림에 위치한 대기관측타워에서 BVOCs 중 이소프렌, 모노테르펜을 2013년 5월, 6월, 8월에 PTR-MS를 이용하여 측정하고 이들의 분포 특성을 분석하였다. $O_3$과 온도, 습도 그리고 광합성유효복사와 잎면적지수를 측정하였다. 측정기간 동안 BVOCs 농도는 온도가 가장 높은 8월보다는 6월에 더 높았다. 태화산에서 측정된 침엽수와 활엽수의 광합성량(NPP, net primary production) 모두 6월에 가장 높았다. 이는 식생의 활동이 6월에 더 활발함을 의미하는데 이는 동북아시아 몬순의 영향으로 생각된다. 이소프렌은 늦은 오후에 최고 농도를, 모노테르펜은 저녁부터 농도가 높아져 밤 늦게 최고 농도를 보였다. 이들 모두 높이에 따라 평균 농도에 차이가 있었는데, 이소프렌과 모노테르펜 모두 캐노피 아래에서 높은 농도를 보였다. 반면, 온도는 캐노피 아래가 위보다 낮았고 $O_3$ 또한 캐노피 위에서 높아 산림 내와 산림 밖의 대기 간에 차이가 있었다. 특히, 이소프렌은 오후시간에 $O_3$과 같은 시간에 최고농도 보여 $O_3$ 생성에, 반대로 $O_3$은 농도가 급격히 감소하는 저녁시간에 캐노피 아래에서 농도가 크게 증가하는 모노테르펜은 $O_3$의 소멸에 영향을 미치는 것으로 나타났다. MEGAN을 이용하여 태화산에서 산정된 이소프렌과 모노테르펜의 배출계수는 각각 $641.9g\;km^{-2}h^{-1}$, $116.8g\;km^{-2}h^{-1}$로 CAPSS에서 산정된 잣나무 배출계수와 비교하면 이소프렌은 높고 반대로 모노테르펜은 낮았다. 이를 바탕으로 연간 배출량은 이소프렌은 1.1(톤/년), 모노테르펜은 0.9(톤/년)으로 산정되었다.

Keywords

References

  1. Atkinson, R. and J. Arey, 2003: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment 37, 197-219. https://doi.org/10.1016/S1352-2310(03)00391-1
  2. Chameides, W. L., R. W. Lindsay, J. Richardson, and C. S. Kiang, 1988: The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241(4872), 1473-1475. https://doi.org/10.1126/science.3420404
  3. de Gouw, J., and C. Warneke, 2007: Measurements of volatile organic compounds in the earth's atmosphere using protontransfer-reaction mass spectrometry. Mass Spectrometry Reviews 26(2), 223-257. https://doi.org/10.1002/mas.20119
  4. Goldstein, A. H., M. McKay, M. R. Kurpius, G. W. Schade, A. Lee, R. Holzinger, and R. A. Rasmussen, 2004: Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophysical Research Letters 31(22).
  5. Guenther, A. B., 2013: Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. ISRN Atmospheric Sciences 2013.
  6. Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5(6), 1471-1492. https://doi.org/10.5194/gmd-5-1471-2012
  7. Han, J., H. Kim, M. Lee, S. Kim, and S. Kim, 2013a: Photochemical Air Pollution of Seoul in the Last Three Decades. Journal of Korean Society for Atmospheric Environment 29(4), 390-406. (In Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.4.390
  8. Han, J., K. Kim, E. Kang, M. Lee, and J-S. Shim, 2013b: Ionic Compositions and Carbonaceous Matter of PM 2.5 at Ieodo Ocean Research Station. Journal of Korean Society for Atmospheric Environment 29(6), 701-712. (In Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.6.701
  9. Hwang, J., H. M. Lee, G. Lee, and J. Han, 2006: Distributions of formaldehyde in Seoul in June, 2005. Journal of Korean Society for Atmospheric Environment 22(1), 63-71. (In Korean with English abstract)
  10. Jacobson, M. Z., 1999: Fundamentals of Atmospheric Modeling, Cambridge University Press, 382pp.
  11. Kim, E. and P. K. Hopke, 2004: Comparison between conditional probability function and nonparametric regression for fine particle source directions. Atmospheric Environment 38(28), 4667-4673. https://doi.org/10.1016/j.atmosenv.2004.05.035
  12. Kim, H., 2013: Characteristic of biogenic VOCs emission and the impact on the ozone formation in Jeju Island. Ph.D. Thesis, Jeju University, Korea, 99pp.
  13. Kim, S-Y., S-Y. Kim, S-H. Choi and S-W. Kim, 2012: A Preliminary Flux Study for $CO_{2}$ and Biogenic VOCs in a Forest. Journal of Korean Society for Atmospheric Environment 28(5), 485-494. (In Korean with English abstract) https://doi.org/10.5572/KOSAE.2012.28.5.485
  14. Kourtchev, I., T. M. Ruuskanen, P. Keronen, L. Sogacheva, M. Dal Maso, A. Reissell, X. Chi, R. Vermeylen, M. Kulmala, W. Maenhaut and M. Claeys, 2008: Determination of isoprene and $\alpha$-/$\beta$-pinene oxidation products in boreal forest aerosols from Hyytiala, Finland: diel variations and possible link with particle formation events. Plant Biology 10(1), 138-149. https://doi.org/10.1055/s-2007-964945
  15. Kulmala, M., I. Riipinen, M. Sipila, H. E. Manninen, T. Petaja, H. Junninen, M. D. Maso, G. Mordas, A. Mirme, M. Vana, A. Hirsikko, L. Laakso, R. M. Harrison, I. Hanson, C. Leung, K. E. J. Lehitinen and V. M. Kerminen 2007: Toward direct measurement of atmospheric nucleation. Science 318(5847), 89-92. https://doi.org/10.1126/science.1144124
  16. Kulmala, M., T. Suni, K. E. J. Lehtinen, M. D. Maso, M. Boy, A. Reissell, U. Rannik, P. Aalto, P. Keronen, H. Hakola, J. Back, T. Hoffmann, T. Vesala and P. Hari, 2004: A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics 4(2), 557-562. https://doi.org/10.5194/acp-4-557-2004
  17. Laffineur, Q., M. Aubinet, N. Schoon, C. Amelynck, J. F. Muller, J. Dewulf, H. V. Langenhove, K. Steppe, M. Simpraga and B. Heinesch, 2011: Isoprene and monoterpene emissions from a mixed temperate forest. Atmospheric Environment 45(18), 3157-3168.
  18. Penuelas, J., and J. Llusia, 2003: BVOCs: plant defense against climate warming?. Trends in Plant Science 8(3), 105-109. https://doi.org/10.1016/S1360-1385(03)00008-6
  19. Ran, L., C. S. Zhao, W. Y. Xu, X. Q. Lu, M. Han, W. L. Lin, P. Yan, X. B. Xu, Z. Z. Deng, N. Ma, P. F. Liu, J. Yu, W. D. Liang and L. L. Chen, 2011: VOC reactivity and its effect on ozone production during the HaChi summer campaign. Atmospheric Chemistry and Physics 11(10), 4657-4667. https://doi.org/10.5194/acp-11-4657-2011
  20. Rasmussen, R. A., and F. W. Went, 1965: Volatile organic material of plant origin in the atmosphere. Proceedings of the National Academy of Sciences of the United States of America 53(1), 215. https://doi.org/10.1073/pnas.53.1.215
  21. Shim, C., J. Hong, J. Hong, Y. Kim, M. Kang, B. M. Thakuri, Y. Kim and J. Chun, 2014: Evaluation of MODIS GPP over a complex ecosystem in East Asia: A case study at Gwangneung flux tower in Korea. Advances in Space Research 54(11), 2296-2308. https://doi.org/10.1016/j.asr.2014.08.031
  22. Tunved, P., H. Korhonen, J. Strom, H. C. Hansson, K. E. J. Lehtinen and M. Kulmala, 2006: Is nucleation capable of explaining observed aerosol integral number increase during southerly transport over Scandinavia?. Tellus B 58(2), 129-140. https://doi.org/10.1111/j.1600-0889.2006.00176.x

Cited by

  1. Effects of Temporal and Interspecific Variation of Specific Leaf Area on Leaf Area Index Estimation of Temperate Broadleaved Forests in Korea vol.7, pp.12, 2016, https://doi.org/10.3390/f7100215
  2. Estimation of Specific Leaf Area Index Using Direct Method by Leaf Litter in Gwangneung, Mt. Taewha and Mt. Gariwang vol.18, pp.1, 2016, https://doi.org/10.5532/KJAFM.2016.18.1.1