• Title/Summary/Keyword: 식별 시스템

Search Result 2,521, Processing Time 0.027 seconds

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Outlier Detection and Labeling of Ship Main Engine using LSTM-AutoEncoder (LSTM-AutoEncoder를 활용한 선박 메인엔진의 이상 탐지 및 라벨링)

  • Dohee Kim;Yeongjae Han;Hyemee Kim;Seong-Phil Kang;Ki-Hun Kim;Hyerim Bae
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.125-137
    • /
    • 2022
  • The transportation industry is one of the important industries due to the geographical requirements surrounded by the sea on three sides of Korea and the problem of resource poverty, which relies on imports for most of its resource consumption. Among them, the proportion of the shipping industry is large enough to account for most of the transportation industry, and maintenance in the shipping industry is also important in improving the operational efficiency and reducing costs of ships. However, currently, inspections are conducted every certain period of time for maintenance of ships, resulting in time and cost, and the cause is not properly identified. Therefore, in this study, the proposed methodology, LSTM-AutoEncoder, is used to detect abnormalities that may cause ship failure by considering the time of actual ship operation data. In addition, clustering is performed through clustering, and the potential causes of ship main engine failure are identified by grouping outlier by factor. This enables faster monitoring of various information on the ship and identifies the degree of abnormality. In addition, the current ship's fault monitoring system will be equipped with a concrete alarm point setting and a fault diagnosis system, and it will be able to help find the maintenance time.

Spatio-Temporal Characteristics of Droughts in Korea: Construction of Drought Severity-Area-Duration Curves (가뭄의 시공간적 분포 특성 연구: 가뭄심도-가뭄면적-가뭄지속기간 곡선의 작성)

  • Kim, Bo Kyung;Kim, Sang Dan;Lee, Jae Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.69-78
    • /
    • 2006
  • The rainfall depth-area-duration analysis which is used to characterize precipitation extremes for specification of so-called design storms, provides a basis for evaluation of drought severity when storm depth is replaced by an appropriate measure of drought severity. So we propose a method for constructing drought severity-area-duration curves in this study. Monthly precipitation data over the whole Korea are used to compute SPI. Such SPIs are abstracted to several independent spatial components from EOF analysis. Using Kriging method, these spatial components are used to constitute grid-based SPI data set over the whole Korea including Jeju island with $6km{\times}6km$ resolution. After identifying main drought events, the drought severity-area-duration curves for these events over 32-year period of record are finally constructed. As a result, such curves show the similar shape with storm-based curves in the sense that the drought severity (or rainfall depth) is inversely proportional to drought area from the curves, but drought-based curves are different from storm-based curves in the sense that the drought severity decreasing rate with respect to drought area is much less than depth decreasing rate.

Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction (해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구)

  • Dae-yaoung Eeom;Bang-hee Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.100-103
    • /
    • 2023
  • Recently, development of maritime autonomoust surface ships and eco-friendly ships, production and evaluation research considering various marine environments is needed in the field of optimal routes as the demand for accurate and detailed real-time marine environment prediction information expands. An algorithm that can calculate the optimal route while reducing the risk of the marine environment and uncertainty in energy consumption in smart ships was developed in 2 stages. In the first stage, a profile was created by combining marine environmental information with ship location and status information within the Automatic Ship Identification System(AIS). In the second stage, a model was developed that could define the marine environment energy map using the configured profile results, A regression equation was generated by applying Random Forest among machine learning techniques to reflect about 600,000 data. The Random Forest coefficient of determination (R2) was 0.89, showing very high reliability. The Dijikstra shortest path algorithm was applied to the marine environment prediction at June 1 to 3, 2021, and to calculate the optimal safety route and express it on the map. The route calculated by the random forest regression model was streamlined, and the route was derived considering the state of the marine environment prediction information. The concept of route calculation based on real-time marine environment prediction information in this study is expected to be able to calculate a realistic and safe route that reflects the movement tendency of ships, and to be expanded to a range of economic, safety, and eco-friendliness evaluation models in the future.

  • PDF

LAN Based MFD Interface for Integrated Operation of Radio Facilities using Fishery Vessel (어선용 무선설비의 통합운용을 위한 LAN 기반 MFD 인터페이스)

  • In-ung Ju;In-suk Kang;Jeong-yeon Kim;Seong-Real Lee;Jo-cheon Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.496-503
    • /
    • 2022
  • In the reality that the fishing population is decreasing and the single-man fishing vessels is increasing, mandatory equipment for navigation and radio equipments for the safety of fishing boats has continued to be added. Therefore, many equipment such as navigation, communication and fishing are installed in the narrow steering room, so it is very confusing and a number of monitors are placed in the front, which is a factor that degrades the function of maritime observation. To solve this problem, we studied an interface that integrates and operates to major radio facilities such as very high frequency-digital selective calling equipment (VHF-DSC), automatic identification system (AIS) and fishing boat location transmission device (V-pass) into one multi function display (MFD) based on LAN. In addition, IEC61162-450 UDP packets and IEC61162 sentence were applied to exchange data through link between MFD and radio equipments, and additional messages needed for each equipment and function were defined. The integrated MFD monitor is easily operated by the menu method, and the performance of the interface was evaluated by checking the distress and emergency communication functions related to maritime safety and the message transmission status by equipment.

Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method (RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측)

  • Olga Chernyaeva;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.325-345
    • /
    • 2023
  • In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.

A study on the Effect of Process, IT, and Organization Characteristics on Business Process Virtualizability (업무 환경의 디지털 전환에서 업무 특성, IT 특성, 조직 특성이 업무 프로세스 가상성에 미치는 영향 연구)

  • Yituo Feng;Sundong Kwon
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.119-142
    • /
    • 2022
  • Organizations are attempting a digital transformation that converts physical business processing into virtual business processing. Through this digital transformation, organizations are overcoming time and space constraints and creating competitiveness. The digital transformation of this work environment has been accelerated as many organizations have implemented remote work due to the recent COVID-19 pandemic. This study focused on business process virtualizability, which is the result of the rapid digital transformation of the work environment. Business process virtualizability is the resulting quality, such as the suitability or excellence of business processing in a virtual environment. This research model is the effect of process, IT and organizational characteristics on business process virtualizability. As a result of the verification of people who have experienced remote work in a virtual environment, first, it was confirmed that, in terms of process characteristics, sensory requirements affect business process virtualizability, but relationship requirements, synchronism requirements, and identification and control requirements do not. Second, in terms of IT characteristics, it was confirmed that representation and reach affect business process virtualizability. Third, it was confirmed that, in terms of organizational characteristics, job autonomy affects business process virtualizability, but evaluation unfairness does not. This study found that representation and reach of IT had the most significant influence on business process virtualizability, job autonomy was next, and sensory requirements had the lowest influence. This presents practical implications for organizations to increase the success potential of business process virtualizability.

A Study on the Drug Classification Using Machine Learning Techniques (머신러닝 기법을 이용한 약물 분류 방법 연구)

  • Anmol Kumar Singh;Ayush Kumar;Adya Singh;Akashika Anshum;Pradeep Kumar Mallick
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.8-16
    • /
    • 2024
  • This paper shows the system of drug classification, the goal of this is to foretell the apt drug for the patients based on their demographic and physiological traits. The dataset consists of various attributes like Age, Sex, BP (Blood Pressure), Cholesterol Level, and Na_to_K (Sodium to Potassium ratio), with the objective to determine the kind of drug being given. The models used in this paper are K-Nearest Neighbors (KNN), Logistic Regression and Random Forest. Further to fine-tune hyper parameters using 5-fold cross-validation, GridSearchCV was used and each model was trained and tested on the dataset. To assess the performance of each model both with and without hyper parameter tuning evaluation metrics like accuracy, confusion matrices, and classification reports were used and the accuracy of the models without GridSearchCV was 0.7, 0.875, 0.975 and with GridSearchCV was 0.75, 1.0, 0.975. According to GridSearchCV Logistic Regression is the most suitable model for drug classification among the three-model used followed by the K-Nearest Neighbors. Also, Na_to_K is an essential feature in predicting the outcome.

Research on the Development of Distance Metrics for the Clustering of Vessel Trajectories in Korean Coastal Waters (국내 연안 해역 선박 항적 군집화를 위한 항적 간 거리 척도 개발 연구)

  • Seungju Lee;Wonhee Lee;Ji Hong Min;Deuk Jae Cho;Hyunwoo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • This study developed a new distance metric for vessel trajectories, applicable to marine traffic control services in the Korean coastal waters. The proposed metric is designed through the weighted summation of the traditional Hausdorff distance, which measures the similarity between spatiotemporal data and incorporates the differences in the average Speed Over Ground (SOG) and the variance in Course Over Ground (COG) between two trajectories. To validate the effectiveness of this new metric, a comparative analysis was conducted using the actual Automatic Identification System (AIS) trajectory data, in conjunction with an agglomerative clustering algorithm. Data visualizations were used to confirm that the results of trajectory clustering, with the new metric, reflect geographical distances and the distribution of vessel behavioral characteristics more accurately, than conventional metrics such as the Hausdorff distance and Dynamic Time Warping distance. Quantitatively, based on the Davies-Bouldin index, the clustering results were found to be superior or comparable and demonstrated exceptional efficiency in computational distance calculation.

Development of the Cloud Monitoring Program using Machine Learning-based Python Module from the MAAO All-sky Camera Images (기계학습 기반의 파이썬 모듈을 이용한 밀양아리랑우주천문대 전천 영상의 운량 모니터링 프로그램 개발)

  • Gu Lim;Dohyeong Kim;Donghyun Kim;Keun-Hong Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • Cloud coverage is a key factor in determining whether to proceed with observations. In the past, human judgment played an important role in weather evaluation for observations. However, the development of remote and robotic observation has diminished the role of human judgment. Moreover, it is not easy to evaluate weather conditions automatically because of the diverse cloud shapes and their rapid movement. In this paper, we present the development of a cloud monitoring program by applying a machine learning-based Python module "cloudynight" on all-sky camera images obtained at Miryang Arirang Astronomical Observatory (MAAO). The machine learning model was built by training 39,996 subregions divided from 1,212 images with altitude/azimuth angles and extracting 16 feature spaces. For our training model, the F1-score from the validation samples was 0.97, indicating good performance in identifying clouds in the all-sky image. As a result, this program calculates "Cloudiness" as the ratio of the number of total subregions to the number of subregions predicted to be covered by clouds. In the robotic observation, we set a policy that allows the telescope system to halt the observation when the "Cloudiness" exceeds 0.6 during the last 30 minutes. Following this policy, we found that there were no improper halts in the telescope system due to incorrect program decisions. We expect that robotic observation with the 0.7 m telescope at MAAO can be successfully operated using the cloud monitoring program.