DOI QR코드

DOI QR Code

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants

원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구

  • Chanwoo Lee (Department of Civil & Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Youjin Kim (Department of Civil & Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hyung-jo Jung (Department of Civil & Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 이찬우 (한국과학기술원 건설및환경공학과 ) ;
  • 김유진 (한국과학기술원 건설및환경공학과) ;
  • 정형조 (한국과학기술원 건설및환경공학과)
  • Received : 2023.03.15
  • Accepted : 2023.04.24
  • Published : 2023.06.30

Abstract

Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

원전 구조물의 실시간 모니터링 기술이 요구되고 있지만, 현재 운영 중인 지진 감시계통으로는 동특성 추출 등 시스템 식별이 제한된다. 전역적인 거동 데이터 및 동특성 추출을 위해서는 다수의 센서를 최적 배치하여야 한다. 최적 센서배치 연구는 많이 진행되어 왔지만 주로 토목, 기계 구조물이 대상이었으며 원전 구조물 대상으로 수행된 연구는 없었다. 원전 구조물은 미미한 신호대잡음비에도 강건한 신호를 획득하여야 하며, 모드 기여도가 저차 모드에 집중되어 있어 모드별 잡음 영향을 고려해야 하는 등 구조물 특성을 고려해야 한다. 이에 본 연구에서는 잡음에 대한 강건도와 모드별 영향을 평가할 수 있는 최적 센서배치 방법론을 제시하였다. 활용한 지표로서 auto MAC(Modal Assurance Criterion), cross MAC, 노드별 모드형상 분포를 분석하였으며, 잡음에 대한 강건도 평가의 적합성을 수치해석으로 검증하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단이 주관하는 가동원전 안전성 향상 핵심기술 개발사업(No. RS-2023-00144425)의 지원을 받아 수행되었습니다.

References

  1. Ali, A., Abu-Hayah, N., Kim, D., Cho, S.G. (2017) Design Response Spectra-Compliant Real and Synthetic GMS for Seismic Analysis of Seismically Isolated Nuclear Reactor Containment Building, Nucl. Eng. & Technol., 49(4), pp. 825~837. https://doi.org/10.1016/j.net.2017.02.006
  2. Carne, T.G., Dohrmann, C.R. (1995) A Modal Test Design Strategy for Model Correlation, 13th Int. Modal Analysis Conf., Nashville, Tennessee, USA, pp.927~933.
  3. Choi, S., Park, S., Hyun, C.H., Kim, M.S. (2013) In-Operation Modal Analysis of Containments using Ambient Vibration, Nucl. Eng. & Des., 260, pp.16~29. https://doi.org/10.1016/j.nucengdes.2013.01.027
  4. Chu, S.Y., Kang, C.J. (2021) Development of the Structural Health Record of Containment Building in Nuclear Power Plant, Nucl. Eng. & Technol., 53(6), pp.2038~2045. https://doi.org/10.1016/j.net.2020.12.018
  5. Guo, H.Y., Zhang, L., Zhang, L.L., Zhou, J.X. (2004) Optimal Placement of Sensors for Structural Health Monitoring using Improved Genetic Algorithms, Smart Mater. & Struct., 13(3), p.528.
  6. Heo, G., Wang , M.L., Satpathi, D. (1997) Optimal Transducer Placement for Health Monitoring of Long Span Bridge, Soil Dyn. & Earthq. Eng., 16(7-8), pp.495~502. https://doi.org/10.1016/S0267-7261(97)00010-9
  7. Huang, Y., Ludwig, S.A., Deng, F. (2016) Sensor Optimization using a Genetic Algorithm for Structural Health Monitoring in Harsh Environments, J. Civil Struct. Health Monit., 6, pp.509~519. https://doi.org/10.1007/s13349-016-0170-y
  8. Joe, Y.H., Cho, S.G. (2002) Seismic Fragility Analysis of Multi-Modes Structures Considering Modal Contribution Factor, J. Earthq. Eng. Soc. Korea, 6(4), pp.15~22. https://doi.org/10.5000/EESK.2002.6.4.015
  9. Kammer, D.C. (1991) Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures, J. Guid., Control & Dyn., 14(2), pp.251~259. https://doi.org/10.2514/3.20635
  10. Kim, M.G. (2017) Safety of Nuclear Power Plant According to the 912 Gyeongju Earthquake in 2016, KSCE J. Civil Eng., 65(4), pp.31~35.
  11. Lee, E. T., Eun, H. C. (2022) An Optimal Sensor Layout Using the Frequency Response Function Data within a Wide Range of Frequencies, Sens., 22(10), Nashville, Tennessee, USA, p.3778.
  12. Makey, G., Yavuz, O., Kesim, D.K., Turnali, A., Elahi, P., Ilday, S., Ilday, F.O. (2019) Breaking Crosstalk Limits to Dynamic Holography using Orthogonality of High-Dimensional Random Vectors, Nat. Photon., 13(4), pp. 251~256. https://doi.org/10.1038/s41566-019-0393-7
  13. Michel, C., Gueguen, P., Bard, P.Y. (2008) Dynamic Parameters of Structures Extracted from Ambient Vibration Measurements: An Aid for the Seismic Vulnerability Assessment of Existing Buildings in Moderate Seismic Hazard Regions, Soil Dyn. & Earthq. Eng., 28(8), pp.593~604. https://doi.org/10.1016/j.soildyn.2007.10.002
  14. NSSC (2017) Measures to Improve the Safety of Nuclear Facilities in Preparation for Major Earthquakes, 73, Nuclear Safety and Security Commission.
  15. NSSC (2018) Seismic Reinforcement Comprehensive Verification Special Committee Operation Result, 77, Nuclear Safety and Security Commission.
  16. Papadimitriou, C., Beck, J.L., Au, S.K. (2000) Entropy-based Optimal Sensor Location for Structural Model Updating, J. Vib. & Control, 6(5), pp.781~800. https://doi.org/10.1177/107754630000600508
  17. Park, S.M., Kim, J.H. (2008) Securing Seismic Safety for Nuclear Power Plant in Korea, Mag. Korean Soc. Hazard Mitig., 8(2), pp.25~34.
  18. Tan, Y., Zhang , L. (2020) Computational Methodologies for Optimal Sensor Placement in Structural Health Monitoring: A Review, Struct. Health Monit., 19(4), pp.1287~1308. https://doi.org/10.1177/1475921719877579
  19. Yi, T.H., Li, H.N., Gu, M. (2011) Optimal Sensor Placement for Structural Health Monitoring based on Multiple Optimization Strategies, Struct. Des. Tall & Spec. Build., 20(7), pp.881~900. https://doi.org/10.1002/tal.712