• Title/Summary/Keyword: 식물환경정화

Search Result 180, Processing Time 0.025 seconds

Studies on the Phytoextraction of Cadmium and Lead Contaminated Soils by Plants Cultivation (토양중 카드뮴과 납의 Phytoextraction을 위한 식물재배 연구)

  • Jung, Goo-Bok;Kim, Won-Il;Moon, Kwang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.213-217
    • /
    • 2000
  • In order to select more proper plants for phytoextraction at the heavy metal polluted areas, 11 species of non-edible plants were cultivated at the cadmium(Cd) and Lead(Pb) treated soils and analyzed the content of the absorbed Cd and Pb in each part of plants. Plants include three fibers(Linum usitatissimum, Cannabis sativa, Gossypium spp.), three flowers(Calendula officinalis, Rhododendron lateritium, Portulaca grandiflora), and five trees(Pinus thunbergii, Magnolia kobus, $Populus\;nigra\;{\times}\;P.$ maximowiczii, Euonymus japonica, Fraxinus rhynchophylla). Yield of tree species were higher than that of fiber and flower species. Cd and Pb were highly accumulated in root rather than leaves and stems. The Cd content of plants was in the order Portulaca grandiflora > Calendula officinalis > Gossypium spp. > Linum usitatissimum, Pb was Cannabis sativa > Linum usitatissimum > Fraxinus rhynchophylla. Total absorbed Cd by each plant was in the order $Populus\;nigra\;{\times}\;P.$ maximowiczii > Euonymus japonica > Rhododendron lateritium, but Pb was $Populus\;nigra\;{\times}\;P.$ maximowiczii > Rhododendron lateritium > Euonymus japonica. Total absorbed Cd and Pb contents in plants were negatively correlated with the residual Cd and Pb in the treated soils. It was estimated that $Populus\;nigra\;{\times}\;P.$ maximowiczii, Euonymus japonica, Fraxinus rhynchophylla, and Rhododendron lateritium were the most effective species for phytoextraction in the polluted area considering yield and heavy metal uptake.

  • PDF

Analysis of the Differences in the Vascular Flora Distributed in the Gatbawi District of Palgongsan Natural Park (입지환경 특성에 따른 팔공산 자연공원 갓바위 지구에 분포하는 관속식물상 차이 분석)

  • Kim, Tae Kyu;Ra, Jung Hwa;Lim, Won Hyeon
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.72-85
    • /
    • 2019
  • This study was conducted to investigate the vascular flora distributed in the Gatbawi District of Palgongsan Natural Park and to provide basic data for the conservation and management of the natural resources. The results of the investigation of the flora with the Gatbawi District from April 2015 through October 2017 are as follows. As a result of drawing up a list of flora based on the specimens of evidence, as for the entire flora, 238 taxa were identified in total: 75 families, 167 genera, 214 species, 3 subspecies, 18 variants and 3 varieties. Also, one species of rare plant, 20 particular floristic species and a total of 18 species of naturalized plant were found.

Compressive Strength and Ecological Characteristics of Mortars Using Expanded Vermiculite Absorbing Bacteria (박테리아를 흡착한 팽창질석 기반의 친생태 모르타르 개발)

  • Yoon, Hyun-Sub;Jung, Seung-Bae;Yang, Keun-Hyeok;Lee, Sang-Seob;Lee, Jae-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • The objective of this study is to evaluate the compressive strength development and ecological characteristics of mortars using expanded vermiculite absorbing bacteria as a fundamental investigation to develop precast eco-concrete products. For bacterial growth under the high-alkalinity and high-dried environments within hardened mortars and for creating plant growth function to mortars, Bacillus alcalophilus and Rhodoblastus acidophilus were separated and cultured. The cultured bacteria were absorbed into expanded vermiculite selected for bacteria shelter. The expanded vermiculite absorbing bacteria was then added into mortar mixture as a volumetric replacement of fine aggregate. Test results showed that the developed technology is very effective in enhancing the plant growth onto the hardened mortars and reducing the COD and T-N concentration in raw water. The optimum replacement level of expanded vermiculite absorbing bacteria can be recommended to be less than 10% considering the compressive strength development and cost of mortars along with the ecological effectiveness.

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel (중금속 및 디젤 오염 토양에서 분리한 중금속 내성 식물 생장 촉진 근권세균의 특성)

  • Lee, Soo Yeon;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.413-424
    • /
    • 2021
  • In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.

Water quality management by bio-purification of bivalve, Mytilus galloprovincialis, in Masan Bay (이매패의 생물정화 기작을 이용한 마산만의 수질개선방안)

  • Hong, Sok Jin;Eom, Ki Hyuk;Jang, Ju Hyung;Park, Jong Su;Kim, Dong Myung;Kwon, Jung No
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.71-84
    • /
    • 2007
  • Masan Bay is a representative semi-closed bay acted as a sedimentation reservoir with a slow current velocity and a poor water circulation in Korea. The pollutants from terrestrial sources into the Masan Bay have apparently environmental pollution problems, such as eutrophication, red tied, and hypoxia. In this study, An ecological modeling work was performed to estimate the material circulation including the growth of bivalve in ecosystem. Furthermore, the effect of water purification was calculated by filter feeding bivalve to particulate organic matter just like COD and phytoplankton. And Water quality management strategy by bio-purification of bivalve is derived through selection of location, quantification of bivalve aquaculture farm. The results showed that the optimum location for bivalve farming is where phytoplankton accumulation by physical processes is maximized and the optimum density and area of bivalve are 35 individuals $m^{-3}$ and ca. 500 hectare, respectively. When assuming conditions for the optimum growth of bivalve, COD could decrease by up to 18% even without other reduction of pollution loads.

  • PDF

Effective Costal Environmental Management by Conjugation of Modeling of Bio-Purification and Total Allowable Pollutant Loads in Masan Bay (생물정화기작과 총허용오염부하량을 연계한 마산만의 효율적 해양환경 개선방안)

  • Eom, Ki-Hyuk;Kim, Gui-Young;Lee, Won-Chan;Lee, Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.38-46
    • /
    • 2012
  • This study carried out current status, characteristics, and problems of coastal environment management on semi-enclosed Masan Bay in Korea and suggests cost-effective and eco-friendly water quality management policy. The pollutants from terrestrial sources into the Bay have apparently environmental pollution problems, such as eutrophication, red tide, and hypoxia. The carrying capacity of the Bay is estimated by hydrodynamic model and ecosystem model, material circulation including bivalve in ecosystem is analyzed by the growth model of bivalve. The resulting reduction in the input load was found to be 50~90%, which is unrealistic. When the efficiency of water quality improvement through bivalve farming was assessed based on the autochthonous COD, 30.7% of the total COD was allochthonous COD and 69.3% was autochthonous COD. The overall autochthonous COD reduction rate by bivalve aquaculture farm was found to be about 6.7%. This study indicate that bivalve farming is about 31% less expensive than advanced treatment facilities that remove both nitrogen and phosphorous.

Screening of Nutrient Removal Hydrophyte and Distribution Properties of Vegetation in Tributaries of the West Nakdong River (서낙동강 유역 하천의 식생 분포특성과 영양염류 정화 수생식물 탐색)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Hwang, Jae-Bok;Park, Sung-Tae;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • This study was conducted to investigate natural distribution of aquatic plane and to find out natural aquatic plants which highly absorb nutrient N and P. We surveyed vegetation within ${\pm}2m$ from streamside in 12 tributaries of the West Nakdong river watershed during May to October in 2003. Hydrophytes surveyed in tributaries of the West Nakdong river watershed were 27 families, 61 genera, 76 species, 3 varieties. Major dominance species of aquatic plants were Z. latifolia, P. communis, P. thunbergii, P. arundinacea, P. japonica, and P. distichum var. indutum. Aquatic plants having high production ability of biomass were Z. latifolia, P. communis, P. arundinacea, P. japonica, and E. crus-galli var. echinata. In the vertical distribution of hydrophytes within streams, dominant species were P. thunbergii and P. japonica in the upper stream, but dominant species in the downstream were P. communis and Z. latifolia. Species diversity or aquatic, plants was reduced, but their biomass and nutrient (T-N and T-P) content per the natural area unit $(m^2)$ were increased in the downsteaam. Nutrient N and P content of aquatic plants per the natural area unit were high at Joman river, Pyeonggangcheon, Bulam drainage canal, and Hogyecheon. Fifty-seven species of aquatic plants having high biomass were grounped into 4 categories $(I{\sim}IV)$ according to their nutrient content per dry weight unit. I group $(T-N,\;\geqq20gkg^{-1}\;&\;P_2O_5,\;\geqq7gkg^{-1})$ was comprised of 3 submerged plants (H. verticillata, P. crispus, and C. demersum), e emergent plants (O. javanica, P. distichum var. indutum, and R. sceleratus), 1 suspended plant (T. japonica), and 1 riparian plant (A. lobatum). Otherwise, in classification of natural hydrophytes according to their nutrient content per natural area unit, Z. latifolia, P. communis, P. longiseta, P. arundinacea, and P. distichum var. indutum possessing great biomass productivity as emergent plants were included in I group $(T-N,\;\geqq1gm^{-2}\;&\;P_2O_5,\;\geqq0.7gm^{-2})$.

Heavy Metals Uptake Capability and Growth of Fifteen Compositae Plants for Phytoremediation (식물환경복원 소재선발을 위한 국화과 15종의 생육 및 중금속 축적능 분석)

  • Kwon, Hyuk Joon;Lee, Cheol Hee;Kim, Soo-Young
    • Korean Journal of Plant Resources
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This study was performed to select the effective plant for phytoremediation of heavy metal contaminated areas. After cultivation of fifteen Compositae plants on soil contaminated with heavy metals for 8 weeks, the growth response and accumulation ability of each parts for heavy metal, such as arsenic, cadmium, copper, lead, and zinc were analyzed. Except Adiantum capillus-veneris, growth of Aster incisus, Coreopsis drumondii), Dendranthema indicum, Saussurea pulchella were relatively fine. Arsenic accumulation ability was the highest by Artemisia gmelini ($25.52mg{\cdot}kg^{-1}$ DW) in underground part, and D. sichotense ($3.35mg{\cdot}kg^{-1}$) in aerial part. Cadmium was the highest by Aster magnus ($2.50mg{\cdot}kg^{-1}$) in aerial part. Aerial and underground part of S. pulchella showed the highest copper accumulation (24.29, $99.92mg{\cdot}kg^{-1}$). In lead, 1.43 (A. magnus)${\sim}5.00mg{\cdot}kg^{-1}$ (S. deltoides) were accumulated in aerial part among fifteen Compositae plants. Aster hayatae ($140.09mg{\cdot}kg^{-1}$), Aster yomena ($109.07mg{\cdot}kg^{-1}$), A. magnus ($100.21mg{\cdot}kg^{-1}$) are absorbed more than $100mg{\cdot}kg^{-1}$ of Zinc. Therefore, they are considered to be phytoremediation material of zinc contaminated areas.

Quantifying Inhibitory Effects of Reclaimed Soils on the Shoot and Root Growth of Legume plant Lentil(Lens culinaris) (정화 처리토가 렌틸(콩과식물)의 지상부 및 뿌리 성장에 주는 영향에 대한 정량평가)

  • Park, Hyesun;Kang, Sua;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • A series of pot experiments were conducted to quantitatively estimate inhibitory effects of reclaimed soil on the growth of Lentil (Lens culinaris) with two soils remediated by land farming (DDC) and low temperature thermal desorption(YJ), respectively. After cultivation in a growth chamber for 8 days, plants were harvested for the analysis of 8 indices including chlorophyll-a and carotenoid in leaves, shoot fresh weight, root dry weight, root length, number of later roots, specific root length (SRL) as well as germination rate in comparison to control experiment conducted on nursery soil. Root length was estimated by SmartRoot program from the digital images of the roots. The results showed germination rate on YJ and DDC soil decreased 29 and 71%, respectively. In comparison to the control, the averaged value of the 8 indices for YJ and DDC soil showed overall growth inhibition was 48 and 68%, respectively. When the same experiment was conducted with 25% (W/W) vermiculate amended soil, plant growth on each soil was comparable to that of the control. The results implies reclaimed soils requires additional processes and/or amendments to reuse for plant growth.

Isolation and Characterization of a N2O-Reducing Rhizobacterium, Pseudomonas sp. M23 from Maize Rhizosphere Soil (옥수수 근권토양으로부터 N2O 환원 근권세균 Pseudomonas sp. M23의 분리 및 특성)

  • Ji-Yoon Kim;Soo Yeon Lee;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.203-207
    • /
    • 2023
  • The N2O-reducing rhizobacterium, Pseudomonas sp. M23, was isolated from maize rhizosphere soil. The maximum N2O reduction rate of the strain M23 was 15.6 mmol·g-dry cell weight-1·h-1. Its N2O reduction activity was not inhibited by diesel contaminant, and it was enhanced by the addition of the root exudates of maize and tall fescue. The remediation efficiency of diesel-contaminated soil planted with maize or tall fescue was not inhibited by inoculating with the strain M23. Root weights in the soil inoculated with the strain M23 were greater than those in the non-inoculated soil. These results suggest that Pseudomonas sp. M23 is a promising bacterium to mitigate N2O emissions during the remediation of diesel-contaminated soil.