Browse > Article
http://dx.doi.org/10.48022/mbl.2106.06013

Characterization of Heavy Metal Tolerant and Plant Growth-Promoting Rhizobacteria Isolated from Soil Contaminated with Heavy Metal and Diesel  

Lee, Soo Yeon (Department of Environmental Science and Engineering, Ewha Womans University)
Lee, Yun-Yeong (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.3, 2021 , pp. 413-424 More about this Journal
Abstract
In order to enhance rhizoremediation performance, which remediates contaminated soils using the interactions between plants and microorganisms in rhizosphere, it is required to develop effective microbial resources that simultaneously degrade contaminants and promote plant growth. In this study, heavy metal-resistant rhizobacteria, which had been cultivated in soils contaminated with heavy metals (copper, cadmium, and lead) and diesel were isolated from rhizospheres of maize and tall fescue. After that, the isolates were qualitatively evaluated for plant growth promoting (PGP) activities, heavy metal tolerance, and diesel degradability. As a result, six strains with heavy metal tolerance, PGP activities, and diesel degradability were isolated. Strains CuM5 and CdM2 were isolated from the rhizosphere soils of maize, and were identified as belonging to the genus Cupriavidus. From the rhizosphere soils of tall fescue, strains CuT6, CdT2, CdT5, and PbT3 were isolated and were identified as Fulvimonas soli, Cupriavidus sp., Novosphingobium sp., and Bacillus sp., respectively. Cupriavidus sp. CuM5 and CdM2 showed a low heavy metal tolerance and diesel degradability, but exhibited an excellent PGP ability. Among the six isolates, Cupriavidus sp. CdT2 and Bacillus sp. PbT3 showed the best diesel degradability. Additionally, Bacillus sp. PbT3 also exhibited excellent heavy metal tolerance and PGP abilities. These results indicate that the isolates can be used as promising microbial resources to promote plant growth and restore soils with contaminated heavy metals and diesel.
Keywords
Rhizobacteria; plant growth-promoting traits; heavy metals; tolerance; contaminated soil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, et al. 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262: 127810.   DOI
2 Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Goncalves B, Santos C. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant. 35: 1281-1289.   DOI
3 Koo S, Cho K. 2007. Characterization of a heavy metal-resistant and plant growth-promoting rhizobacterium, Methylobacterium sp. SY-NiR1. Korean J. Microbiol. Biotechnol. 35: 58-65.
4 Dell'Amico E, Cavalca L, Andreoni V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol. 52: 153-162.   DOI
5 Hajdu R, Slaveykova VI. 2012. Cd and Pb removal from contaminated environment by metal resistant bacterium Cupriavidus metallidurans CH34: Importance of the complexation and competition effects. Environ. Chem. 9: 389-398.   DOI
6 Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard Mater. 250: 477-483.   DOI
7 Benitez E, Melgar R, Nogales R. 2004. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biol. Biochem. 36: 1615-1623.   DOI
8 Estrada-De Los Santos P, Solano-Rodriguez R, Matsumura-Paz LT, Vasquez-Murrieta MS, Martinez-Aguilar L. 2014. Cupriavidus plantarum sp. nov., a plant-associated species. Arch Microbiol. 196: 811-817.   DOI
9 Wang L, Wang J, Zhu L, Wang J. 2018. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses. Environ. Geochem. Health 40: 763-776.   DOI
10 Nagarajkumar M, Bhaskaran R, Velazhahan R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159: 73-81.   DOI
11 Hwang JS, Song HG. 2020. Antifungal activity of Bacillus subtilis isolates against toxigenic fungi. Korean J. Microbiol. 56: 28-35.
12 Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. 2016. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere 162: 31-39.   DOI
13 Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard Mater. 151: 364-371.   DOI
14 Oh SD, Ahn BO, Kim MK, Sohn SI, Ryu TH, Cho HS, et al. 2010. Effects of protox herbicide tolerance rice cultivation on microbial community in paddy soil. Korean J. Env. Agric. 32: 95-101.   DOI
15 Prapagdee B, Watcharamusik A. 2009. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine. Braz. J. Microbiol. 40: 838-845.   DOI
16 Liu X, Liu M, Chen X, Yang Y, Hou L, Wu S, et al. 2019. Indigenous PAH degraders along the gradient of the Yangtze Estuary of China: Relationships with pollutants and their bioremediation implications. Mar. Pollut. Bull. 142: 419-427.   DOI
17 Saharan BS, Verma S. 2014. Potential plant growth promoting activity of Bacillus licheniformis UHI(II)7. Int. J. Microb. Resour. Technol. 2: 22-27.
18 Zulfiqar U, Farooq M, Hussain S, Maqsood M, Hussain M, Ishfaq M, et al. 2019. Lead toxicity in plants: Impacts and remediation. J. Environ. Manage. 250: 109557.   DOI
19 Joo JO, Kim IH, Oh B-K. 2014. Removal of Cupper(II), Zinc(II) in marine environment by heavy metal resistant Desulfovibrio desulfuricans. KSBB J. 29: 139-144.   DOI
20 Wohler, I. 1997. Auxin-indole derivatives in soils determined by a colorimetric method and by high performance liquid chromatography. Microbiol. Res. 152: 399-405.   DOI
21 Grobelak A, Kokot P, Swiatek J, Jaskulak M, Rorat A. 2018. Bacterial ACC deaminase activity in promoting plant growth on areas contaminated with heavy metals. J. Ecol. Eng. 19: 150-157.
22 Barrado LN. 2018. Isolation and characterisation of endophytes from vitis vinifera. Univ Politecnica Valencia, pp. 1-25.
23 Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606.   DOI
24 Lyu Y, Zheng W, Zheng T, Tian Y. 2014. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9: 101438.
25 Deng Y, Yang F, Deng C, Yang J, Jia J, Yuan H. 2017. Biodegradation of BTEX aromatics by a haloduric microbial consortium enriched from a sediment of Bohai Sea, China. Appl. Biochem. Biotechnol. 183: 893-905.   DOI
26 Hong S, Cho K-S. 2007. Effects of plants, rhizobacteria and physicochemical factors on the phytoremediation of contaminated soil. Korean J. Microbiol. Biotechnol. 35: 261-271.
27 Krishnan R, Menon RR, Busse HJ, Tanaka N, Krishnamurthi S, Rameshkumar N. 2017. Novosphingobium pokkalii sp. nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res. Microbiol. 168: 113-121.   DOI
28 Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM. 2018. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep. 37: 1557-1569.   DOI
29 Chettri B, Singh AK. 2019. Kinetics of hydrocarbon degradation by a newly isolated heavy metal tolerant bacterium Novosphingobium panipatense P5:ABC. Bioresour. Technol. 294: 122190.   DOI
30 Jiang C, Sheng X, Qian M, Wang Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164.   DOI
31 Dotaniya ML, Meena VD. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc. Natl. Acad. Sci. India Sect. B - Biol Sci. 85: 1-12.   DOI
32 Ashraf R, Ali TA. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan J. Bot. 39: 629.
33 Kabagale AC, Cornu B, Van Vliet F, Meyer CL, Mergeay M, Simbi JBL, et al. 2010. Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334: 461-474.   DOI
34 Xiao L, Yu Z, Liu H, Tan T, Yao J, Zhang Y, et al. 2020. Effects of Cd and Pb on diversity of microbial community and enzyme activity in soil. Ecotoxicology 29: 551-558.   DOI
35 Rodriguez-Conde S, Molina L, Gonzalez P, Garcia-Puente A, Segura A. 2016. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl. Microbiol. Biotechnol. 100: 10627-10636.   DOI
36 Kamaruzzaman MA, Abdullah SRS, Hasan HA, Hassan M, Othman AR, Idris M. 2020. Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus. Biocatal. Agric. Biotechnol. 23: 101456.   DOI
37 Segura A, Udaondo Z, Molina L. 2021. PahT regulates carbon fluxes in Novosphingobium sp. HR1a and influences its survival in soil and rhizospheres. Environ. Microbiol. 23: 2969-2991.   DOI
38 Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. 2019. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). Environ. Toxicol. Pharmacol. 72: 103265.   DOI
39 Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101: 8599-8605.   DOI
40 Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51: 11-17.   DOI
41 Liu X, Wei S, Wang F, James EK, Guo X, Zagar C, et al. 2012. Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China. FEMS Microbiol. Ecol. 80: 417-426.   DOI
42 Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar MA. 2009. Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int. J. Environ. Sci. Technol. 6: 435-442.   DOI
43 Ledger T, Zuniga A, Kraiser T, Dasencich P, Donoso R, Perez-Pantoja D, et al. 2012. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 101: 713-723.   DOI
44 Ke T, Zhang J, Tao Y, Zhang C, Zhang Y, Xu Y, et al. 2021. Individual and combined application of Cu-tolerant Bacillus spp. enhance the Cu phytoextraction efficiency of perennial ryegrass. Chemosphere 263: 127952.   DOI
45 Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, Elsayed AE, et al. 2021. Role of Bacillus cereus in improving the growth and Phytoextractability of Brassica nigra (L.) K. koch in chromium contaminated soil. Molecules 26: 1569.   DOI
46 Yang C, Ho YN, Makita R, Inoue C, Chien MF. 2020. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Ecotoxicol. Environ. Saf. 190: 110075.   DOI
47 Siripornadulsil S, Thanwisai L, Siripornadulsil W. 2014. Changes in the proteome of the cadmium-tolerant bacteria Cupriavidus taiwanensis KKU2500-3 in response to cadmium toxicity. Can J. Microbiol. 60: 121-131.   DOI
48 Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, et al. 2019. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 234: 769-776.   DOI
49 Islam MR, Sultana T, Joe MM, Yim W, Cho JC, Sa T. 2013. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. J. Basic Microbiol. 53: 1004-1015.   DOI
50 Heidari P, Panico A. 2020. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp. Int. J. Environ. Res. Public Health 17: 4059.   DOI
51 Al-Sharidah A, Richardt A, Golecki JR, Dierstein R, Tadros MH. 2000. Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol. Res. 155: 157-164.   DOI
52 Yuniarti E, Dalmacio IF, Paterno ES. 2019. Heavy metal-resistant rhizobacteria from gold mine in Pongkor Indonesiaa and copper mine in Marinduque Philippines. J. ILMU Pertan. 31: 75-88.
53 Singh P, Kim YJ, Nguyen NL, Hoang VA, Sukweenadhi J, Farh MEA, et al. 2015. Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 107: 749-758.
54 Singh S, Kumar V, Sidhu GK, Datta S, Dhanjal DS, Koul B, et al. 2019. Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal. Agric. Biotechnol. 17: 665-671.   DOI
55 Huang N, Mao J, Hu M, Wang X, Huo M. 2019. Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. J. Basic Microbiol. 59: 446-457.   DOI
56 Siripornadulsil S, Siripornadulsil W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol. Environ. Saf. 94: 94-103.   DOI
57 Vicentin RP, Santos JV, Labory CRG, Costa AM, Moreira FMS, Alves E. 2018. Tolerance to and Accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator. Rev. Bras. Cienc do Solo. 42: 1-12.
58 Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D. 2009. Lead(II) resistance in Cupriavidus metallidurans CH34: Interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 96: 171-182.
59 Patowary K, Saikia RR, Kalita MC, Deka S. 2015. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann. Microbiol. 65: 225-234.   DOI
60 Huang Y, Li L. 2014. Biodegradation characteristics of naphthalene and benzene, toluene, ethyl benzene, and xylene (BTEX) by bacteria enriched from activated sludge. Water Environ. Res. 86: 277-284.   DOI
61 Kampfer P, Martin K, McInroy JA, Glaeser SP. 2015. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int. J. Syst. Evol. Microbiol. 65: 195-200.   DOI
62 Minari GD, Saran LM, Constancio MTL, da Silva RC, Rosalen DL, de Melo WJ, et al. 2020. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil. Ecotoxicol. Environ. Saf. 204: 111038.   DOI
63 Li X, Yan Z, Gu D, Li D, Tao Y, Zhang D, et al. 2019. Characterization of cadmium-resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J. Basic Microbiol. 59: 579-590.   DOI