Browse > Article
http://dx.doi.org/10.7857/JSGE.2021.26.5.001

Quantifying Inhibitory Effects of Reclaimed Soils on the Shoot and Root Growth of Legume plant Lentil(Lens culinaris)  

Park, Hyesun (Department of Civil & Environmental Engineering, Gachon University)
Kang, Sua (Department of Civil & Environmental Engineering, Gachon University)
Bae, Bumhan (Department of Civil & Environmental Engineering, Gachon University)
Publication Information
Journal of Soil and Groundwater Environment / v.26, no.5, 2021 , pp. 1-8 More about this Journal
Abstract
A series of pot experiments were conducted to quantitatively estimate inhibitory effects of reclaimed soil on the growth of Lentil (Lens culinaris) with two soils remediated by land farming (DDC) and low temperature thermal desorption(YJ), respectively. After cultivation in a growth chamber for 8 days, plants were harvested for the analysis of 8 indices including chlorophyll-a and carotenoid in leaves, shoot fresh weight, root dry weight, root length, number of later roots, specific root length (SRL) as well as germination rate in comparison to control experiment conducted on nursery soil. Root length was estimated by SmartRoot program from the digital images of the roots. The results showed germination rate on YJ and DDC soil decreased 29 and 71%, respectively. In comparison to the control, the averaged value of the 8 indices for YJ and DDC soil showed overall growth inhibition was 48 and 68%, respectively. When the same experiment was conducted with 25% (W/W) vermiculate amended soil, plant growth on each soil was comparable to that of the control. The results implies reclaimed soils requires additional processes and/or amendments to reuse for plant growth.
Keywords
Chlorophyll-a; Inhibition; Lentil; Germination; Reclaimed soil; Specific root length;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, S.H., Lee, J.H., Jung, W.C., Park, M., Kim, M.S., Lee, S.J., and Park, H., 2020, Changes in soil health with remediation of petroleum hydrocarbon contaminated soils using two different remediation technologies, Sustainability, 12(23), 10078.   DOI
2 Yi, Y.M., Oh, C., Kim, G., Lee, C., and Sung, K., 2012, Changes in the physicochemical properties of soil according to soil remediation methods, J. Soil Groundw. Environ., 17(4), 36-43.   DOI
3 Lichtenthaler, H.K., 1987, [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350-382.   DOI
4 Ostonen, I., Puttsepp, U., Biel, C., Alberton, O., Bakker, M.R., Lohmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A., Vanguelova, E., Weih, M., and Brunner, I., 2007, Specific root length as an indicator of environmental change, Plant Biosyst., 141(3), 426-442.   DOI
5 Bergsveinson, J., Perry, B.J., Simpson, G.L., Yost, C.K., Schutzman, R.J., Hall, B.D., and Cameron, A.D.S., 2019, Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure, Microb. Biotechnol., 12(6), 1199-1209.   DOI
6 Lim, S.J., Kim, J.H., Choi, G.H., Kwon, Y.B., Kim, D.H., and Park, B.J., 2013, Germination rate and radicle growth inhibition in crops by total petroleum hydrocarbons (TPH), Korean J. Environ. Agric., 32(4), 273-278.   DOI
7 Lukic, B., Panicoc, A., Huguenotd, D., Fabbricino M., van Hullebusch, E.D., and Esposito, G., 2017, A review on the efficiency of landfarming integrated with composting as a soil remediation treatment, Environ. Technol. Rev., 6(1), 94-116.   DOI
8 Lobet, G., Pages, L., and Draye, X., 2011, A novel image-analysis toolbox enabling quantitative analysis of root system architecture, Plant Physiol., 157(1), 29-39.   DOI
9 Maccarrone, M., Veldink, G.A., Vliegenthart, J.F.G., and Agro, A.F., 1997, Ozone stress modulates amine oxidase and lipoxygenase expression in lentil(Lens culinaris) seedlings, FEBS Lett., 408(2), 241-244.   DOI
10 OECD, 2003, OECD Guideline for the Testing of Chemicals, Terrestrial Plant Test, 208: Seedling Emergence and Seedling Growth Test.
11 국립산림과학원, 2014, 토양및식물체분석법: 토양물리성, 등록번호 11-1400377-000748-01.
12 Picado, A., Nogueira, A., Baeta-Hall, L., Mendonca, E., de Fatima Rodrigues, M., do Ceu Saagua, M., Martins, A., and Anselmo. A.M., 2001, Landfarming in a PAH-contaminated soil, J. Environ. Sci. Health, A36(9), 1579-1588.   DOI
13 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9(7), 671-675.   DOI
14 Tang, J., Wang, M., Wang, F., Sun, Q., and Zhou, Q., 2011, Eco-toxicity of petroleum hydrocarbon contaminated soil. J. Environ. Sci., 23(5) 845-851.   DOI
15 Tepe, M. and Aydemir, T., 2011, Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogen sources, Afr. J. Biotechnol., 10(53), 10882-10891.   DOI
16 Wani, P.A., Khan, Md.S., and Zaidi, A. 2008, Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc-amended soil, Agron. Sustainable Dev., 28(3), 449-455.   DOI
17 Yi, Y.M., Kim, G., and Sung, K., 2013, Effects of soil remediation methods on the biological properties of soils, J. Soil Groundw. Environ., 18(8), 73-81.
18 환경부, 2020, 제2차토양보전기본계획.
19 Han, S.H., Jung, M.C., Kim, J.W., Jeon, S.W., Nguyen, Q.T., Yoon, K.W., and Min, S.K., 2020, The occurrence and treatment status of off-site contaminated soils in Korea, J. Soil Groundw. Environ., 25(4), 1-6.   DOI
20 환경부, 2013, 토양정화실적통계자료.
21 Ahmed, F.R.S., Alexander, I.J., Mwinyikione Mwinyihija, M., and Killham, K., 2012, Effect of arsenic contaminated irrigation water on Lens culinaris L. and toxicity assessment using lux marked biosensor, J. Environ. Sci., 24(6), 1106-1116.   DOI
22 Alam, M.Z., Hoque, Md. A., Ahammed, G.J., McGee, R., and Carpenter-Boggs, L., 2019, Arsenic accumulation in lentil (Lens culinaris) genotypes and risk associated with the consumption of grains, Sci. Am., 9, 9431.
23 Cokkizgin, A. and Cokkizgin, H., 2010, Effects of lead (PbCl2) stress on germination of lentil (Lens culinaris Medic.) lines, Afr. J. Biotechnol., 9(50), 8608-8612.
24 Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., and Dorostkar, 2011, Landfarming process effects on biochemical properties of petroleum-contaminated soils, Soil Sediment Contam., 20(2), 234-248.   DOI
25 Besalatpour, A., Khoshgoftarmanesh, A.H., Hajabbasi, M.A., and Afyuni, M., 2008, Germination and growth of selected plants in a petroleum contaminated calcareous soil, Soil Sediment Contam., 17(6), 665-676.   DOI
26 Choi, M.-Z., Kim, J.-Y., Kim, J-H., and Choi, S.-I., 2010, A study on effects of oil contaminated soil on the growth of plant, J. Soil Groundw. Environ., 15(1), 50-56.
27 Eissenstat, D.M., 1991, On the relationship between specific root length and the rate of root proliferation : A field study using citrus rootstocks, New Phytol., 118(1), 63-68.   DOI
28 Janas, K.M., Zielinska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M.M., Amarowicz, R., and Kosinska, A., 2010, The impact of copper ions on growth lipid peroxidation and phenolic compound accumulation and localization in lentil(Lens culinaris Medic.) seedlings, J. Plant Physiol., 167(4), 270-276.   DOI
29 Khan, Z., Shahwar, D., Ansari, M.K.A., and Chandel, R., 2019, Toxicity assessment of anatase (TiO2) nanoparticles: A pilot study on stress response alterations and DNA damage studies in Lens culinaris Medik, Heliyon, 5(7), e02069.   DOI
30 Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., and Laughlin, D.C., 2016, Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum, J. Ecol., 104(5), 1299-1310.   DOI
31 Pape, A., Switzer, C., Mccosh, N., and Knapp, C.W., 2015, Impacts of thermal and smouldering remediation on plant growth and soil ecology, Geoderma, 243-244, 1-9.   DOI
32 Doran, J.W. and Zeiss, M.R., 2000, Soil health and sustainability: Managing the biotic component of soil quality, Appl. Soil Ecol., 15(1), 3-11.   DOI