1 |
Lee, S.H., Lee, J.H., Jung, W.C., Park, M., Kim, M.S., Lee, S.J., and Park, H., 2020, Changes in soil health with remediation of petroleum hydrocarbon contaminated soils using two different remediation technologies, Sustainability, 12(23), 10078.
DOI
|
2 |
Yi, Y.M., Oh, C., Kim, G., Lee, C., and Sung, K., 2012, Changes in the physicochemical properties of soil according to soil remediation methods, J. Soil Groundw. Environ., 17(4), 36-43.
DOI
|
3 |
Lichtenthaler, H.K., 1987, [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350-382.
DOI
|
4 |
Ostonen, I., Puttsepp, U., Biel, C., Alberton, O., Bakker, M.R., Lohmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A., Vanguelova, E., Weih, M., and Brunner, I., 2007, Specific root length as an indicator of environmental change, Plant Biosyst., 141(3), 426-442.
DOI
|
5 |
Bergsveinson, J., Perry, B.J., Simpson, G.L., Yost, C.K., Schutzman, R.J., Hall, B.D., and Cameron, A.D.S., 2019, Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure, Microb. Biotechnol., 12(6), 1199-1209.
DOI
|
6 |
Lim, S.J., Kim, J.H., Choi, G.H., Kwon, Y.B., Kim, D.H., and Park, B.J., 2013, Germination rate and radicle growth inhibition in crops by total petroleum hydrocarbons (TPH), Korean J. Environ. Agric., 32(4), 273-278.
DOI
|
7 |
Lukic, B., Panicoc, A., Huguenotd, D., Fabbricino M., van Hullebusch, E.D., and Esposito, G., 2017, A review on the efficiency of landfarming integrated with composting as a soil remediation treatment, Environ. Technol. Rev., 6(1), 94-116.
DOI
|
8 |
Lobet, G., Pages, L., and Draye, X., 2011, A novel image-analysis toolbox enabling quantitative analysis of root system architecture, Plant Physiol., 157(1), 29-39.
DOI
|
9 |
Maccarrone, M., Veldink, G.A., Vliegenthart, J.F.G., and Agro, A.F., 1997, Ozone stress modulates amine oxidase and lipoxygenase expression in lentil(Lens culinaris) seedlings, FEBS Lett., 408(2), 241-244.
DOI
|
10 |
OECD, 2003, OECD Guideline for the Testing of Chemicals, Terrestrial Plant Test, 208: Seedling Emergence and Seedling Growth Test.
|
11 |
국립산림과학원, 2014, 토양및식물체분석법: 토양물리성, 등록번호 11-1400377-000748-01.
|
12 |
Picado, A., Nogueira, A., Baeta-Hall, L., Mendonca, E., de Fatima Rodrigues, M., do Ceu Saagua, M., Martins, A., and Anselmo. A.M., 2001, Landfarming in a PAH-contaminated soil, J. Environ. Sci. Health, A36(9), 1579-1588.
DOI
|
13 |
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9(7), 671-675.
DOI
|
14 |
Tang, J., Wang, M., Wang, F., Sun, Q., and Zhou, Q., 2011, Eco-toxicity of petroleum hydrocarbon contaminated soil. J. Environ. Sci., 23(5) 845-851.
DOI
|
15 |
Tepe, M. and Aydemir, T., 2011, Antioxidant responses of lentil and barley plants to boron toxicity under different nitrogen sources, Afr. J. Biotechnol., 10(53), 10882-10891.
DOI
|
16 |
Wani, P.A., Khan, Md.S., and Zaidi, A. 2008, Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc-amended soil, Agron. Sustainable Dev., 28(3), 449-455.
DOI
|
17 |
Yi, Y.M., Kim, G., and Sung, K., 2013, Effects of soil remediation methods on the biological properties of soils, J. Soil Groundw. Environ., 18(8), 73-81.
|
18 |
환경부, 2020, 제2차토양보전기본계획.
|
19 |
Han, S.H., Jung, M.C., Kim, J.W., Jeon, S.W., Nguyen, Q.T., Yoon, K.W., and Min, S.K., 2020, The occurrence and treatment status of off-site contaminated soils in Korea, J. Soil Groundw. Environ., 25(4), 1-6.
DOI
|
20 |
환경부, 2013, 토양정화실적통계자료.
|
21 |
Ahmed, F.R.S., Alexander, I.J., Mwinyikione Mwinyihija, M., and Killham, K., 2012, Effect of arsenic contaminated irrigation water on Lens culinaris L. and toxicity assessment using lux marked biosensor, J. Environ. Sci., 24(6), 1106-1116.
DOI
|
22 |
Alam, M.Z., Hoque, Md. A., Ahammed, G.J., McGee, R., and Carpenter-Boggs, L., 2019, Arsenic accumulation in lentil (Lens culinaris) genotypes and risk associated with the consumption of grains, Sci. Am., 9, 9431.
|
23 |
Cokkizgin, A. and Cokkizgin, H., 2010, Effects of lead (PbCl2) stress on germination of lentil (Lens culinaris Medic.) lines, Afr. J. Biotechnol., 9(50), 8608-8612.
|
24 |
Besalatpour, A., Hajabbasi, M.A., Khoshgoftarmanesh, A.H., and Dorostkar, 2011, Landfarming process effects on biochemical properties of petroleum-contaminated soils, Soil Sediment Contam., 20(2), 234-248.
DOI
|
25 |
Besalatpour, A., Khoshgoftarmanesh, A.H., Hajabbasi, M.A., and Afyuni, M., 2008, Germination and growth of selected plants in a petroleum contaminated calcareous soil, Soil Sediment Contam., 17(6), 665-676.
DOI
|
26 |
Choi, M.-Z., Kim, J.-Y., Kim, J-H., and Choi, S.-I., 2010, A study on effects of oil contaminated soil on the growth of plant, J. Soil Groundw. Environ., 15(1), 50-56.
|
27 |
Eissenstat, D.M., 1991, On the relationship between specific root length and the rate of root proliferation : A field study using citrus rootstocks, New Phytol., 118(1), 63-68.
DOI
|
28 |
Janas, K.M., Zielinska-Tomaszewska, J., Rybaczek, D., Maszewski, J., Posmyk, M.M., Amarowicz, R., and Kosinska, A., 2010, The impact of copper ions on growth lipid peroxidation and phenolic compound accumulation and localization in lentil(Lens culinaris Medic.) seedlings, J. Plant Physiol., 167(4), 270-276.
DOI
|
29 |
Khan, Z., Shahwar, D., Ansari, M.K.A., and Chandel, R., 2019, Toxicity assessment of anatase (TiO2) nanoparticles: A pilot study on stress response alterations and DNA damage studies in Lens culinaris Medik, Heliyon, 5(7), e02069.
DOI
|
30 |
Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J., and Laughlin, D.C., 2016, Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum, J. Ecol., 104(5), 1299-1310.
DOI
|
31 |
Pape, A., Switzer, C., Mccosh, N., and Knapp, C.W., 2015, Impacts of thermal and smouldering remediation on plant growth and soil ecology, Geoderma, 243-244, 1-9.
DOI
|
32 |
Doran, J.W. and Zeiss, M.R., 2000, Soil health and sustainability: Managing the biotic component of soil quality, Appl. Soil Ecol., 15(1), 3-11.
DOI
|