• Title/Summary/Keyword: 시화호

Search Result 232, Processing Time 0.034 seconds

Eutrophication in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역의 부영양화)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Heo, Woo-Myoung;Lee, Yun-Kyoung;Hwang, In-Seo;Lee, Han-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.216-227
    • /
    • 2008
  • To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.

Status and Feasibility Study on Tidal Energy Technology (조력에너지 기술 현황 및 경제성 분석)

  • Cho, Young-Beom;Wee, Jung-Ho;Kim, Jeong-In
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.103-115
    • /
    • 2010
  • Currently, many nations in the world make a strong effort to exploit the new and renewable energy. Tidal energy is the constant and regular power sources with higher and more stable quality compared to other renewable sources. The present paper reports the status of tidal energy analyzing its latest technology and development. In addition, a feasibility study on two types of tidal power plant(TPP) systems is conducted based on many assumptions, conditions and data involved in the Korea environment. The Sihwa and Uldolmok TPP are considered as the reference of tidal barrage(TB) and tidal in stream energy conversion(TISEC) type, respectively. While TB technology is currently mature and reliable, there still remain many environmental issues. Whereas, TISEC is recently received more attention due to its environmental friendly aspect. Therefore, the TISEC is believed to be very promising technology as the TPP. The unit electricity generation cost of Sihwa TPP is approximately 67.3 KRW/kWh. However, considering additional cost of Sihwa lake construction, it increases to 254 KRW/kWh. In Uldolmok, the unit electricity generation cost is calculated to be about 400 KRW/kWh, which is even higher than that of Sihwa TPP. This is ascribed to high cost of TISEC device and construction cost due to its technological infancy as well as relatively small power capacity. Nevertheless, the TISEC technology would be substantially developed in the future due to its many advantageous features.

Analysis of Geochemical Characteristics in the Intertidal Zone of Hyung-Do, Shi-Hwa Lake (시화호 형도 갯벌의 지화학적 특성 분석)

  • Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han-Jun;Cho, Jin-Hyung;Lee, Seung-Yong;Jang, Seok
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.243-263
    • /
    • 2011
  • In order to understand the sedimentary environment of the southern intertidal zone of Shihwa Lake, west coast of Gyeonggi-do, 10 surface and 2 core sediment samples were analysed for grain size, water content, AVS (Acid Volatile Sulfide), TOC (Total Organic Carbon), concentrations of metals (Al, Fe, Mn, Cu, As, Pb, Zn, Ni, Cd, and Cr). The surface sediments are generally poorly sorted (0.60~2.31 ${\phi}$) sandy Silt, slightly gravelly muddy Sand, silty Sand, Sand with mean grain size of 2.95 to 6.00 ${\phi}$. The sediments contain Al (1.54%), Fe (1.75%), Cu (9.1ppm), As (1.1ppm), Pb (18.8 ppm), Ni (11.0 ppm), Cd (0.02 ppm), and Cr (30.1 ppm) on the average. Heavy metals are concentrated less than ERL (Effect Range-Low), verified by NOAA (National Oceanic and Atmospheric Administration). In the core sediments, they are also less than the ERL. Based on the uniform vertical distribution of excess radioactivity of $^{210}Pb$, the core sediments seen to have been actively mixed biologically or rapidly deposited after the construction of Shi-Hwa Seawall. The 'enrichment factor' of metals, normalized to Al, shows that the upper sediments of 35 cm in depth are more polluted. infect was significant in 2 core sediment samples in 35 cm below layer.

The Intertidal Restoration and Relationship with Water birds According to Before and After Operation of Sihwa Lake Tidal Power Plant (시화호 조력발전소 가동 전·후 조간대 복원과 수조류와의 관계)

  • Park, Chi-Young;Kim, Ho-Joon;Paik, In-Hwan;Jin, Seon-Deok;Paek, Woon-Kee;Lee, Joon-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.3
    • /
    • pp.320-327
    • /
    • 2016
  • Intertidal zone has been restored by the Sihwa Lake tidal power plant is operating in 2012. After restoration, to check the difference of bird group's community change out, the examination has been carried out from 2009 to 2014 when sea dike sluicer runs, the intertidal zone area was increased to $20.3km^2$ after restoring in $5.3km^2$. There was no significant difference in the number of individuals congestion of the whole, but the results of analysis of the differences between the six bird group by number of individuals, it showed a significant difference in Diving ducks(p = 0.237) the Herons (p<0.001), Swans and Geese (p<0.01), Dabbling ducks (p<0.001), showed a significant difference in the Shore birds (p<0.001) gulls (p<0.001) except for diving of ducks. Sihwa Lake intertidal zone was only just been restored, but environment and the improvement of benthic ecosystem has been carried out, It is determined that waterfowls that living based on intertidal zone are also affected. This study is a good example of the restoration of the intertidal zone that disappeared, which hard to find a similar case. It will be utilized as basic data of ecological monitoring for the conservation and management of the future of the intertidal zone later.

Error Analysis of the Local Water Temperature Estimated by the Global Air Temperature Data (광역 기온자료를 이용한 국지 수온 추정오차 비교 분석)

  • Lee, Khil-Ha;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.275-283
    • /
    • 2011
  • A local or site-specific water temperature is downscaled from the nation-wide air temperature that represents simulation by General Circulation Model (GCM). Both two-step and one-step method are tested and compared in three sites: Masan Bay, Lake Sihwa, and Nakdong River Estuary. Two-step method uses a linear regression model as the first step that converts nation-wide air temperature into local air temperature, and the corresponding coefficient of determination is in the range of 0.98~0.99. The second step that converts air temperature into water temperature uses a nonlinear curve, so called S-curve, and the corresponding root mean squared error (RMSE) is 2.07 for rising limb in Masan Bay, 1.93 for falling limb in Masan Bay, 2.59 for Lake Sihwa, and 1.58 for Nakdong River Estuary. In a similar way, one-step method is performed to directly convert nation-wade air temperature into local water temperature, and the corresponding RMSE is 2.28 for rising limb in Masan Bay, 1.89 for falling limb in Masan Bay, 2.55 for Lake Sihwa, and 1.52 for Nakdong River Estuary. Consequently both methods show a similar level of performance, and one-step method is recommendable in that it is simple and practical in relative terms.

An Application of $^{13}C$ Tracer for the Determination of Size Fractionated Primary Productivity in Upper Stream of Lake Shihwa ($^{13}C$ 추적자를 사용한 시화호 상류역에서의 식물플랑크톤 크기에 따른 1차생산성 측정에 관한 연구)

  • Lee, Yeon-Jung;Kim, Min-Seob;Won, Eun-Ji;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.93-99
    • /
    • 2006
  • Primary productivity was determined by using $^{13}C$ tracer according to different cell size of phytoplank-ton through in situ incubation experiments in upper stream of the Lake Shihwa. The average concentration of chlorophyll a was 14 ${\mu}g\;L^{-1}$ demonstrating an eutrophic water. The ratio of POC/Chl-a was lower than 30, reflecting that the origin of organic matter might be mainly phytoplankton. The primary productivity was 93.9 mgC m^{-2}\;d^{-1}$ at St. 1, which was about 40-fold lower than the average value of the lake (3,972 mgC m^{-2}\;d^{-1}$) determined by Choi et al. (1997) before opening of gate but it was higher than the average primary productivity (3.98 mgC m^{-2}\;d^{-1}$) reported by KOWACO in 1993 before constructing dam. The fractionated size (20 ${\sim}$ 53 ${\mu}m$) of phytoplankton community account for 51% of total primary productivity, indicating the highest assimilation rate. This study suggest that $^{13}C$ tracer methodology should be applied as a useful approach for the water ecological research in the future.

The Saemangeum: History and Controversy (새만금: 역사와 갈등)

  • Koh, Chul-Hwan;Ryu, Jong-Seong;Khim, Jong-Seong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • The paper describes the history and the evolution of the conflict of the Saemangeum reclamation project, focusing on the court trial processes. The Saemangeum project is the world largest coastal reclamation work, regarded as the most controversial environmental issue in the recent history of Korea. Due to the severe pollution found in Lake Sihwa in 1996, the Saemangeum project began to receive a large degree of public concern on the water quality of the proposed artificial freshwater lake. Unlike the Sihwa case, the Korean court system intervened to resolve the heated conflicts between stakeholders in the Saemangeum case. Based on the same set of facts, the Korean courts showed different perspectives on the economic feasibility, value of the ecosystem, land use, and water quality, which represents the limit of legal system to address complicated environmental problems. After the final judgment by the Supreme Court, 'the Special Act for the promotion of the Saemangeum reclamation project', was enacted with strong political support from local leaders and congressmen. A more developmental-oriented land use plan came out in 2009 based on this Act. The Saemangeum project walked along the different pathway from the Sihwa case. The area should be managed in sustainable manners to appropriately consider conservation and development for the prosperity of local residents and future generations.

Temporal and Spacial Distributions of Water Quality and Evaluation of Pollutant Removal Efficiency in the Sihwa Constructed Wetland (시화호 인공습지에서 시공간적 수질분포 및 오염물질 제거효율 평가)

  • Choi, Don-Hyeok;Choi, Kwang-Soon;Kim, Dong-Sup;Kim, Sea-Won;Choi, Dong-Ho;Hwang, In-Seo;Lee, Yun-Kyoung;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1013-1020
    • /
    • 2008
  • To evaluate the pollutant removal efficiency and clarify the cause of low removal efficiency of the wetland, temporal and spacial distributions of water quality were investigated at 16 sites in the Sihwa constructed wetland. The removal efficiency showed a tendency to decrease since the construction of the wetland, except for TN. In addition, the efficiency was largely varied with season, especially BOD and TP. No removal efficiency of BOD was observed in April and July when algal bloom was occurred in lower part open water of the wetland. On the other hand, TP showed no removal efficiency from April to August showing -291% of removal efficiency in August. From the horizontal distribution in closed water regions, SS concentration for the central area was significantly higher than for left and right areas(p = 0.013, center > left > right areas). From the results of this study, we infer that anaerobic condition due to the excessive accumulation of organic matters and lack of uniformity of water flow distribution are major factors of the low removal efficiency of the wetland.

Case Study on the Improvement of Pollutant Removal Efficiency in Sihwa Constructed Wetland (시화호 인공습지의 수질정화기능 향상을 위한 사례연구)

  • Choi, Don-Hyeok;Kang, Ho;Choi, Kwang-Soon
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Three plans(induction of water flow, supply of oxygen into water, control of fish causing resuspension of solids) proposed to improve the pollutant removal efficiency of Sihwa Constructed Wetland(CW) were estimated by considering the their efficiency and application to the wetland. After construction of facility for induction of water flow in lower part(W 122m${\times}$L 103m) of the wetland, the mean removal efficiencies of BOD, SS, TN and TP were in range of 12.8~37.4% and BOD was showing the highest efficiency. This result indicates that water flows is one of very important factors in the pollutant removal of wetland, especially near the outlet of a large scale wetland such as Sihwa CW. Dissolved oxygen(DO) concentrations after operation of two oxygen supply systems such as Air Bubble Diffuser and Surface Aeration System increased 15.5% and 27.2%, respectively. For maintaining effective DO concentration in Sihwa CW, the operation of oxygen supply system may be desirable during midnight to dawn in the location in which DO concentration is not enough, for instance less than 2 mg/L in CW. In experiments of the fish removal from Sihwa CW, the mean turbidity was lower in test site(6.2 NTU) than control site(10.6). The removal efficiency of thurbidity by th fish removal from the wetland was 41.5%. Therefore, a relevant fish management through a periodical monitoring of fish and turbidity is needed.