Browse > Article
http://dx.doi.org/10.17663/JWR.2011.13.2.243

Analysis of Geochemical Characteristics in the Intertidal Zone of Hyung-Do, Shi-Hwa Lake  

Lee, Jun-Ho (한국해양연구원 해양방위연구센터)
Jeong, Kap-Sik (한국해양연구원 해양방위연구센터)
Woo, Han-Jun (한국해양연구원 해양방위연구센터)
Cho, Jin-Hyung (한국해양연구원 해양방위연구센터)
Lee, Seung-Yong (한국해양연구원 해양방위연구센터)
Jang, Seok (한국해양연구원 해양방위연구센터)
Publication Information
Journal of Wetlands Research / v.13, no.2, 2011 , pp. 243-263 More about this Journal
Abstract
In order to understand the sedimentary environment of the southern intertidal zone of Shihwa Lake, west coast of Gyeonggi-do, 10 surface and 2 core sediment samples were analysed for grain size, water content, AVS (Acid Volatile Sulfide), TOC (Total Organic Carbon), concentrations of metals (Al, Fe, Mn, Cu, As, Pb, Zn, Ni, Cd, and Cr). The surface sediments are generally poorly sorted (0.60~2.31 ${\phi}$) sandy Silt, slightly gravelly muddy Sand, silty Sand, Sand with mean grain size of 2.95 to 6.00 ${\phi}$. The sediments contain Al (1.54%), Fe (1.75%), Cu (9.1ppm), As (1.1ppm), Pb (18.8 ppm), Ni (11.0 ppm), Cd (0.02 ppm), and Cr (30.1 ppm) on the average. Heavy metals are concentrated less than ERL (Effect Range-Low), verified by NOAA (National Oceanic and Atmospheric Administration). In the core sediments, they are also less than the ERL. Based on the uniform vertical distribution of excess radioactivity of $^{210}Pb$, the core sediments seen to have been actively mixed biologically or rapidly deposited after the construction of Shi-Hwa Seawall. The 'enrichment factor' of metals, normalized to Al, shows that the upper sediments of 35 cm in depth are more polluted. infect was significant in 2 core sediment samples in 35 cm below layer.
Keywords
Shi-Hwa Lake sedimentary environment; Intertidal zone; Surface and core sediments; Enrichment factors; Heavy Metals;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim K.H., and Burnett W.C., Gamma-ray spectrometric determination of uraniumseries nuclides in marine phosphorites, Anal. Chem, Vol. 55, pp. 1796-1800, 1983.   DOI   ScienceOn
2 Krumbein, W.C., Size frequency distributions of sediments, Journal of Sedimentary Petrology, Vol. 4, pp. 65-77, 1934.
3 Lee, P.K., Baillif, P ., Touray, J.C., and Ildefonse, J.P., Heavy Metal Cont amin ation of Setting Particles in a Ret ention Pon d along the A - 71 Motorway in Sologne, France, Society of Total Environment, Vol. 201, pp. 1- 15, 1997.   DOI   ScienceOn
4 Long, E.R., MacDounald, D.D., Smith, S.L., and Calder, F.D., Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediment, Environment Management, Vol. 19, pp. 91-97, 1995.
5 Rudnick, R.L., and Fountain, D.M., Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys, Vol. 33, pp. 267-309, 1995.   DOI   ScienceOn
6 McManus, J., Grain size determination and interpretation, In Techniques in Sedimentology, Tucker M (ed.), Blackwell: Oxford, pp. 63-85, 1988.
7 NOAA, National status and trends program for marine environmental quality, NOAA Technical Memorandum NOS OMA, USA, pp. 8-60, 1987.
8 Ruttenberg, K.C., Development of a sequential extraction method for different forms of phophorous in marine sediments, Limnology and Oceanography, Vol. 37, pp. 1460-1482, 1992.   DOI   ScienceOn
9 해양수산부, 시화호 해양환경 개선 사업, BSPM44101-1932-4, pp. 182-183, 2007.
10 해양수산부, 해양환경공정시험방법, pp. 1-250, 2008.
11 화성시문화재단, 화성 고정리 공룡알화석지 자연유산자원조사 결과 보고서, BSPG47360-2129-5, pp. 48, 2009.
12 Google maps, http://maps.google.co.kr, 2011.
13 환경부, 습지보전기본계획, pp. 60-80, 2007.
14 Calvert, S.E., Mineralogy and geochemistry of nearshor sediments. In: Chemical Oceanography, Vol. 6 2nd ed., eds. by J.P. Riley and Chester R. Academic Press, London. pp 187-280, 1976.
15 Folk, R.L, Petrology of sedimentary rocks Hemphill's Austin. Texas, pp. 170, 1968.
16 Horowitz, A., and Presley, B.J., Trace metal concentrations and partitioning in zooplankton, neuston, and benthos from the south Texas outer continental shelf, Archives of Environmental Contamination and Toxicology, Vol. 5, pp. 241-225, 1977.   DOI   ScienceOn
17 Kemp, A.L.W., T homas, R.L., Dell, C.I., and Jaquet, J.M., Cultural Impact on the Geochemistry of sedement in Lake Erie, Journal of Fish Research Board Canada, Vol. 33, pp. 440- 462, 1976.   DOI
18 Kindler, F.M., and Sevin, H.E., Heavy metals in sediment of Turkish river systems. Natural background and anthropogenic effects, In Broekaert J.A.C.(ed), Met al Speciation in the Environmental, pp. 601- 611, 1990.
19 국토해양부, 시화호 해양환경 개선 사업, BSPM54791-2138-4, pp. 284-285, 2009.
20 국립환경연구원, 정책 결정자를 위한 수질관련 기준 비교분석, 38010-67730-37-0010, pp. 17-18, 2000.
21 김경태, 김은수, 조성록, 박준건, 박청길, 시화호 및 주변 하천 표층퇴적물의 중금속 분포변화, Ocean and Polar Reserch, 제25권, pp. 447-457, 2003.   DOI
22 권영택, 마산만 오염퇴적물 준설토 투기해역의 중금속 오염평가, 한국해양환경공학회지, 제7권, pp. 75-81. 2004.
23 이평구, 박성원, 염승준, 공주 금흥매립지의 중간복토재 및 차수재(논토양)의 중금속 오염과 존재형태 연구, 자원환경지질, 제34권, pp. 283- 299, 2001.
24 Udden, J.A,, Mechanical composition of clastic sediments, Bulletin of the Geological Society of America, Vol. 25, pp. 655-644, 1914.   DOI
25 최만식, 천종화, 우한준, 이희일. 시화호 표층 퇴적물의 중금속 및 퇴적상 변화, 한국환경과학회, 제8권, pp. 593-600, 1999.
26 해양수산부, 시화호 해양환경 개선 사업, BSPM226-00-1607-4, pp. 3, 2004.
27 해양수산부, 해양오염퇴적물 조사 정화․복원 체계 구축 [II], BSPM333000-1805-4, pp. 239-255, 2005.
28 이평구, 이재영, 프랑스 A- 71 고속도로변 Retention pond의 기능 평가, 한국토양학회지, 제2권, pp. 73- 81, 1997.
29 일본수산자원보호협회, 수산환경퇴적물 기준, pp. 88, 1972.