• Title/Summary/Keyword: 시편시험

Search Result 1,314, Processing Time 0.033 seconds

Effect of Zine Oxide Size and Oxygen Pressure on the Magnetic Properties of (Ni, Zn) Ferrite Powders Prepared by Self-propagating High Temperature Synthesis (ZnO의 입도와 산소압이 고온연소합성법으로 제조된 Ni-Zn Ferrite 분말의 자기적 특성에 미치는 영향)

  • Choi, Yong;Cho, Nam-Ihn;Hahn, Y.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.78-84
    • /
    • 1999
  • $(Ni, Zn)Fe_2O_4$ powders were prepared through self-propagating high temperature synthesis reaction and the effects of initial zinc oxide powder size and oxygen pressure on the magnetic properties of the final combustion products were studied. The ferrite powders were combustion synthesized with iron, iron oxide, nickel oxide, and zinc oxide powders under various oxygen pressures of 0.5~10 atmosphere after blended in n-hexane solution for 5 minutes with a spex mill, followed by dried at 120 $^{\circ}C$ in vacuum for 24 hours. The maximum combustion temperature and propagating rate were about 1250 $^{\circ}C$ and 9.8 mm/sec under the tap density, which were decreased with decreasing ZnO size and oxygen pressure. The final product had porous microstructure with spinel peaks in X-ray spectra. As the ZnO particle size in the reactant powders and oxygen pressure during the combustion reaction increase, coercive force, maximum magnetization, residual magnetization, squareness ratio were changed from 1324 Oe, 43.88 emu/g, 1.27 emu/g, 0.00034 emu/gOe, 37.8$^{\circ}C$ to 11.83 Oe, 68.87 emu/g, 1.23 emu/g, 0.00280 emu/gOe, 43.9 $^{\circ}C$ and 7.99 Oe, 75.84 emu/g, 0.791 emu/g, 0.001937 emu/gOe, 53.8 $^{\circ}C$ respectively. Considering the apparent activation energy changes with oxygen pressure, the combustion reaction significantly depended on initial oxygen pressure and ZnO particle size.

  • PDF

Dynamic Strain Aging of Zircaloy-4 PWR Fuel Cladding in Biaxial Stress State (가압경수로용 지르칼로이-4 피복관의 2축 응력 인장시 동적 변형 시효)

  • Park, Ki-Seong;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-98
    • /
    • 1989
  • The expanding copper mandrel test performed at three strain rates (3.2$\times$10E -5/s, 2.0$\times$10E-6/s and 1.2$\times$10E-7/s) over 553-873 K temperature range by varying the heating rates (8-1$0^{\circ}C$/s, 1-2$^{\circ}C$/s and 0.5$^{\circ}C$/s) in air and in vacuum (5$\times$10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in $\alpha$-zirconium and Zircaloy-2 (207-220 KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573 K and 673 K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress ( $\sigma$$^{a}$ $_{y}$ - $\sigma$$^{v}$ $_{y}$ / $\sigma$$^{v}$ $_{y}$ ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase.

  • PDF

Fracture Toughness Prediction of RPV Steels Using Crack Arrest Load of Load-Displacement Curve in Charpy V - Notch Impact Test (샤피 V - 노치 충격 하중-변위 곡선의 균열정지하중을 이용한 원자로압력용기강의 파괴인성 예측)

  • Park, Jeong-Yong;Kim, Ju-Hak;Lee, Yun-Gyu;Hong, Jun-Hwa
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.305-311
    • /
    • 2000
  • Applicability of crack arrest load measured from the Charpy V-notch impact test has been investigated to predict the fracture toughness of nuclear reactor pressure vessel (RPV) steels (ASME SA508 Cl.3). The temperature dependence of the crack arrest load was well described by the type of exponential function characterized by an index temperature at which the crack arrest load is 2kN. The specific index temperature, which also well correlated with $T_{NDT}\;and\;T_{41J}$ is expected to be representative index temperature characterizing the crack arrest fracture toughness of RPV steels. Also, the crack arrest load correlated well with the stable crack length measured from the fracture surface. From the measurements of the crack arrest load and the stable crack length, the lower bound fracture toughness, $K_{Ia}$ of RPV steels could be predicted with sufficient accuracy.

  • PDF

Effect of h-BN Content on Microstructure and Mechanical Properties of AIN Ceramics (AIN 세라믹스의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 이영환;김준규;조원승;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.874-880
    • /
    • 2003
  • The effect of h-BN content on microstructure, mechanical properties, and machinability of AlN-BN based machinable ceramics were investigated. The relative density of sintered compact decreased with increasing h-BN content. The four-point flexural strength also decreased from 238 MPa of monolith up to 182 MPa by the addition of 30 vol% h-BN. Both low Young's modulus and residual tensile stress, formed by the thermal expansion coefficient difference between AIN and h-BN, might cause the strength drop in AlN-BN composite. The crack deflection, and pull-out phenomena increased by the plate-like h-BN. However, the fracture toughness decreased with h-BN content. The second phases, consisted of YAG and ${\gamma}$-Al$_2$O$_3$, were formed by the reaction between Al$_2$O$_3$ and Y$_2$O$_3$. During end-milling process, feed and thrust forces measured for AlN-(10~30) vol% BN composites decreased with increasing h-BN particles, showing excellent machinability. Also, irrespective of h-BN content, relatively good surfaces with roughness less than 0.5 m (Ra) could be achieved within short lapping time.

Comparative analysis of various corrosive environmental conditions for NiTi rotary files (니켈티타늄 파일의 부식에 영향을 미치는 다양한 환경 조건 비교)

  • Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.377-388
    • /
    • 2008
  • The aim of the present study is to compare the corrosion tendency using two kinds of NiTi files in the various environmental conditions through the visual examination and electrochemical analysis. ProTaper Universal S2, 21 mm (Dentsply Maillefer, Ballaigues, Switzerland) and Hero 642, 0.06 tapers, size 25, 21 mm (Micromega, Besancon, France) rotary instruments were tested. The instruments were randomly divided into eighteen groups (n = 5) by the immersion temperature, the type of solution, the brand of NiTi rotary instrument and the presence of mechanical loading. Each file was examined at various magnifications using Scanning Electron Microscope (JEOL, Akishima, Tokyo, Japan) equipped with energy dispersive X-ray microanalysis (EDX). EDX was used to determine the components of the endodontic file alloy in corroded and noncorroded areas. The corrosion resistance of unused and used NiTi files after repeated uses in the human teeth was evaluated electrochemically by potentiodynamic polarization test using a potentiostat (Applied Corrosion Monitoring, Cark-in-Cartmel, UK). Solution temperature and chloride ion concentration may affect on passivity of NiTi files. Under the conditions of this in vitro study, the corrosion resistance is slightly increased after clinical use.

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

A Study on Iron-manufacture Method through Analysis of Ironware excavated from Byeokje, Goyang (고양 벽제 제철 유구 출토 철기의 분석을 통한 제철방법 연구)

  • Lim, Ju-Yeon;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2012
  • The ironware production technology is a measure to fathom the society's level of development in time. To understand iron-manufacure methods in the past, various investigations on the fine structures and additions of ironware remains and Iron ingot have been conducted in a way of natural science. This study metallurgically reclassifies remains excavated in iron-manufacture remains located in Beokje, Goyang, which are thought to be in time of Goryeo Dynasty, and draws an inference from the element analysis on the iron-manufacture and smelting technology. Iron ingot samples with a cast iron structure are divided into those with a white cast iron structure and those with a grey cast iron rich in P. The P content of grey cast iron appeared to be the result of adding a flux agent like lime, iron ingot and carbon steel iron ingot with a cast iron structure excavated in the area is regarded as pig iron which was made without a refining process. In this study it seems that two methods of making ironware were used in the area; one is the method of making ironware by pouring cast iron to the casting, and the other is the method of making carbon steel through the refinement of pig iron. It appears that highly even steel structure of carbon steel and a small amount of MnS inclusion are very similar with that of the modern steel to which Mn is artificially added. Nevertheless, these data alone cannot be used to determine the source of Mn in the carbon steel of the excavated from the iron-manufacture remains, which raises the need for further studies on the source and the possibility of carbon steel via the iron-manufacture process of cast iron.

Optimum Design of Lock Snap-fit Using Design of Experiment (실험계획법을 이용한 이탈방지 스냅핏의 최적설계)

  • Son, In-Seo;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.378-385
    • /
    • 2017
  • This study investigated the design of a snap fit, which is widely used for fastening plastic parts. We analyzed the assembly mechanism of a lock snapfit, measured the assembly force and separation force based on the design of experiments, and derived a regression equation through an analysis of variance. The response surface methodology was also used. Polybutylene terephthalate was used to fabricate specimens, and the assembly force and separation force were measured using a micro-tensile tester. The length, width, thickness, and interference were considered as factors. A second-order regression model was used to derive the regression equation. The assembly force decreased with increasing length and width, but it increased with increasing thickness and interference. The finite element method was used to analyze the assembly mechanics. The width decreased the assembly force by increasing the ductility. The influences of the factors for low assembly force and high release force were shown to be opposite to each other. It was necessary to design a structure that minimized the assembly force while maintaining an appropriate level of separation force.

EFFECT OF THE ADDITIONAL ETCHING PROCEDURE ON PUSH-OUT BOND STRENGTH OF ONE-STEP RESIN CEMENT (부가적 부식 과정이 단일 접착 과정 레진 시멘트의 접착 강도에 미치는 영향)

  • Kang, Soon-Il;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of additional etching procedure prior to Maxcem resin cement application in indirect restoration cementation using push-out bonding strength. One hundred and two extracted human molars were used to make indirect resin restorations of gold inlay and Synfony. These restorations were cemented using Maxcem and Variolink II. Additional etching procedures were done for one group with Maxcem. Three groups have 17 specimens in both restoration types. Push-out bond strength was measured using multi-purpose tester and calculated for bonding strength per sqaure-millimeter area. The mean bonding strength values were compared using SPSS 12.0K program for one-way ANOVA and Scheffe's Test with 95% significance. Under the condition of this study, the additional etching procedure prior to usage of Maxcem resulted in reduced bond strength for both of restoration types.

INFLUENCE OF ADHESIVE APPLICATION ON SHEAR BOND STRENGTH OF THE RESIN CEMENT TO INDIRECT RESIN COMPOSITE (치과용 접착제가 복합레진 인레이와 레진시멘트의 결합력에 미치는 영향)

  • Song, Mi-Hae;Park, Su-Jung;Cho, Hyun-Gu;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.419-427
    • /
    • 2008
  • This study analyzed the influence of dental adhesive/primer on the bond strength between indirect resin composite and the resin cement. Seventy disc specimens of indirect resin composite (Tescera Dentin, Bisco) were fabricated. And bonding area of all specimens were sandblasted and silane treated for one minute. The resin cements were used with or without application of adhesive/primer to bonding area of indirect resin restoration, Variolink-II (Ivoclar-Vivadent) : Exite DSC, Panavia-F (Kuraray) : ED-Primer, RelyX Unicorn (3M ESPE) Single- Bond, Duolink (Risco) : One-step, Mulitlink (Ivoclar-Vivadent) : Multilinh Primer. Shear bond strength was measured by Instron universal testing machine. Adhesive application improved shear bond strength (p<0.05) But Variolink II and Panavia-F showed no statistically significant difference according to the adhesive application. With the above results, when resin inlay is luted by resin cement it seems that application of dental adhesive/primer is necessary in order to improve the bond strength.