기능 분해는 복잡한 시스템을 이해하기 위해 광범위에게 사용되는 시스템 모델링 기술이다. 기능 분해는 문제 영역을 기능별로 분해하는 데 그 기반을 두고 있으며 , 이는 시스템의 기능에 대한 식별을 전제로 한다. 일반적으로 시스템의 기능에 대한 식별은, 분석가에 의해 어떠한 조직적인 지침없이 비정형적으로 수행되는 것이 관례였다. 따라서 이러한 기법을 이용하면 시스템을 분할하거나 시스템의 기능을 올바르게 식별하기가 매우 어렵다. 본 논문은 이러한 기능 분석에 대해 use case을 이용한 기법을 제안하고자한다. 본 기법의 장점은 크게 두가지로 요약할수 있다. 첫째, 시스템의 분할과 기능에 대한 식별이 전통적인 기법보다 더 용이하다. 둘째, 시스템의 요구사항과 구현이 사용자에 의해 쉽게 검증될 수 있다. 본 기법은 하향식으로 이루어져, 구조적 분석과 같이 보편화된 기능 분석 기법들과 자연스럽게 병합될 수 있다. 본 논문은 이를 위해 use case의 식별, 그리고 이를 이용한 기능 분해를 단계적 과정과 가이드라인을 통해 설명하고, 이를 특정 에플리케이션에 적용하여 그 유용성을 입증한다.
"시스템 식별(system identification)"이란 신호처리(signal processing)의 한 분야로서, 제어분야에서는, 제어시스템 설계 시 요구되는 제어대상 플랜트(plant)의 수학적 모델을 실제 시스템의 입력과 출력데이터를 활용하여 얻기 위한 필요한 체계적인 절차들을 제공해준다. 본 기법은 물리적 또는 화학적 기초원리(first principles)로부터 시스템 모델을 얻기가 어렵거나 매우 복잡한 경우에 주로 쓰이고 있으며, 이때 따라 산업현장에서도 점차 그 역할이 중요해지고 있다. 제어의 다른 분야와 유사하게 이 분야 또한 매우 수학적이어서 제어로봇시스템 학회지의 이번 호부터 총 4회에 걸쳐서 이 분야의 가장 근본적이며 실제적인 이론과 적용방법 들을 간단한 예제와 함께 다룰 계획이다. 첫 번째 순서로서 이번 호에서는 시스템 식별분야에 대한 빠른 이해를 위해 단순한 정적 그리고 동적인 시스템 예제에 대하여 최소자승법(least squares method)을 통한 시스템 파라미터 추정기법을 설명하며, 시스템 식별기법의 종류 그리고 시스템 식별 수행 시 반드시 거쳐야 단계와 절차를 소개한다.
이번 편에서는 첫 번째 편에서 소개된 블랙박스 모델을 결정하는 기법 중의 하나인 매개변수 시스템 식별법을 소개한다. 이 기법은 식별하고자 하는 대상 시스템에 대하여 매개변수들로 표현되는 여러 가지 후보 모델들을 선정한 후 확정된 입출력 데이터와 추정 알고리즘을 적용하고 여러 가지 검증과정을 통하여 실제 시스템의 데이터에 가장 가까운 특성을 보이는 모델을 선정하는 방법이다. 이를 위해서 본 편에서는 선형-시불변 시스템의 블랙박스 식별에서 종종 사용되는 여러 가지 모델구조들을 소개한다.
In diffusing an information systems(IS), the provider of the IS can be more effective if they can identify user groups who can adopt the system early. By focusing on the user groups, system providers can encourage them to adopt the IS. After the early adopters adopt an IS, the diffusion of the system to other groups can be easier by early adopters' voluntary advertisement and help in adopting the IS. Instead of discrete choice methods which are usually used for this purpose, we suggest a decision tree method. Compared to discrete choice methods, this method is more accurate for prediction and can easily identify non-linear segments of groups. By testing the data of adopters of an IS in agricultural business, we show the excellence of this method in identifying target groups to focus on. This method would help system providers to diffuse their systems by starting from early adopters.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.42
no.11
/
pp.937-946
/
2014
This paper presents system identification of a single tilt wing UAV. A Modified Equation Error Method(MEEM) and Extended Kalman Filter(EKF) are used for the identification of a single tilt wing UAV system in frequency-domain and time-domain, respectively. Simulated flight data is obtained from CNUX-3's vertical mode linear simulation with realistic sensor noise. System identification performance is analyzed with respect to a variety of design parameters of the MEEM. Also, High accuracy Fourier Transform(HFT) is applied to enhance the performance of MEEM. The results of the MEEM is compared with those of the EKF. Design parameters of the MEEM and initial conditions of the EKF are decided from optimization.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1998.05a
/
pp.216-221
/
1998
슈퍼임포즈는 개인식별 방법으로 신원 미상의 두개골의 발견 시, 두개골의 사진과 용의자 생전 사진의 동일 비율로 확대, 축소 후 두 영상을 중첩하므로서 동일인 여부를 비교, 판별하는 기법이다. 삼풍백화점 붕괴사고와 Guam KAL기 추락사고와 같이 대형사건에서의 개인식별에 매우 중요한 문제이다. 본 연구는 비디오 카메라로 입력한 두개골 영상과 스캐너로 입력한 생전 사진의 중첩을 위한 H/W 시스템의 구축과 영상처리 기법을 응용한 응용 프로그램을 개발하였다 슈퍼임포즈의 영상처리 기법으로는 두개골 및 생전 사진의 윤곽선 추출, 중첩점 조정, 상,하,좌,우 각도조정, 윤곽선보정, Hue 조정, 히스토그램 조정 등 다양한 영상처리 기법을 응용하였다. 또한, 이들 영상처리기법은 법의학 체제에 입각한 슈퍼임포즈 영상합성이 개인식별 감정시 필요한 최적의 영상 비교가 가능하도록 DB 시스템 구축과 분석시스템을 개발하였다. 그리고, 실제 감정시 본 영상시스템으로 감정해 본 결과로 보다 정확하고 실시간으로 감정이 가능하다. 본 슈퍼 임포즈 영상시스템은 슈퍼 임포즈 영상자료의 처리와 축적 기술의 발전으로, 두개골 영상과 생전 사진을 이용한 생전의 3차원 실 영상의 복원연구가 가능하리라 사료된다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.67-69
/
2002
레거시 시스템은 수년간 기업에서 많은 노력과 투자하여 개발되어 왔으며 현재는 기업의 중요한 자산으로 여겨지고 있다. 하지만 수많은 수정을 거치면서 시스템은 점차 비구조화 되어지고 그에 따른 문서화 작업이 제대로 이루어지지 않았으며, 과거의 중앙 집중적인 메인 프레임환경을 웹과 같은 분산 환경으로 이전하고자 하는 비즈니스 요구사항이 점차 증대되고 있다. 본 논문에서는 레거시 시스템을 컴포넌트 래핑 기술을 이용하여 엔터프라이즈 자바 빈(EJB)으로 생성하는 지원도구 개발의 일환인 레거시 컴포넌트 식별 기법을 소개한다. 제안된 식별 기법은 비즈니스 로직을 변수 분류(Variable Classification), 슬라이싱 판별 기준, 워크플로워 분석을 이용한 레거시 컴포넌트 후보를 식별하는 방법을 제시한다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2006.06a
/
pp.237-244
/
2006
시맨틱 웹 관련연구가 증가함에 따라 하나의 관련분야로 규칙기반 시스템 동의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 하지만 규칙기반 시스템을 활용하기에는 아직도 규칙습득이 많은 제약이 되고 있다. 규칙습득은 웹으로부터 필요한 규칙을 습득하는 일련의 방법인데, 이러한 규칙을 습득하기 위해서는 규칙구성요소를 먼저 식별해야만 한다. 그러나 이러한 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의해 이루어지고 있다. 본 연구의 목적은 웹으로부터 규칙구성요소 식별을 최대한 자동화하고 지식관리자의 수작업을 최소화함으로써 그 부담을 줄여 주는 데 있다. 이러한 방법으로는 온톨로지를 근간으로 하여 웹 페이지와의 문자열 비교, 이러한 비교의 한계를 극복하기 위한 확장등의 방법이 있다. 첫 번째 방법은 온툴로지 기반으로 규칙식별 할 웹 페이지와 비교를 통해 지식관리자의 규칙식별 과정을 최대한 자동화하여 주는 것이다. 여기서 만약 현재 규칙을 식별하고자 하는 웹 사이트와 유사한 시스템의 규칙들을 활용하여 일반화 된 온툴로지가 구축되었다면, 이 온톨로지를 기반으로 규칙을 식별하고자 하는 웹사이트와의 비교를 통해 규칙구성요소를 자동화하여 추출 할 수 있다. 이러한 온툴로지를 기반으로 규칙을 식별하기 위해서는 문자열 비교 기법을 사용하게 된다. 하지만 단순한 문자열 비교 기법만으로는 규칙을 식별하는 데에 자연어 처리에 대한 한계가 있다. 이를 극복하기 위해 다음의 두 번째 방법을 사용하고자 한다. 두 번째 방법은 정형화되지 않은 정보들을 확장하여 사용하는 것이다. 우선 찾고자 하는 단어들의 원형을 찾기 위한 스테밍 알고리즘 기법, WordNet을 이용하여 동의어 유의어등으로 확장을 하는 WordNet Expansion 기법, 의미 유사도를 측정하기 위한 방법인 Semantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다.
Proceedings of the Safety Management and Science Conference
/
2012.11a
/
pp.527-534
/
2012
오늘날 기술의 발전으로 시스템들은 점차 대형화 복잡화 되어가고 있다. 이처럼 점차 대형화 복잡화 되어가고 있는 시스템들은 더욱 커진 사고 및 고장에 대한 위험을 내재하게 된다. 또한 대형 복합 시스템에서 발생하는 사고 및 고장은 바로 큰 재산피해나 인명피해와 직결 될 수 있다. 따라서 체계적인 안전관리의 필요성이 점차 커지고 있다. 이에 대응하여 철도, 항공, 해양 등의 산업에서는 각 산업에 적합한 안전관리체계를 수립하려 노력하고 있으며, 표준 및 매뉴얼을 제정하여 보급에 앞장서고 있다. 예로써 가장 활발히 안전관리체계의 도입을 추구하고 있는 항공 분야에서는 국제민강항공기구와 미 연방항공청의 주도로 안전관리체계에 대한 가이드와 매뉴얼을 만들어 각국의 사정에 맞는 안전관리체계를 도입할 수 있는 바탕을 제공 하고 있다. 이처럼 점차 중요해지고 있는 안전관리체계내에서도 위험원 식별 및 분석활동은 그 중요성이 크다. 이를 통해 도출되는 위험원 및 위험원의 영향 및 원인이 시스템 개발 및 운용에서 수행하게 될 안전관리활동의 바탕이 되기 때문이다. 따라서 위험원 식별 및 분석활동에 적용하기 위한 여러 기법에 대한 연구가 활발히 이뤄지고 있다. 본 논문에서는 여러 가지 위험원 식별 기법 중 HAZOP을 이용하여 고속철도시스템의 위험원 식별 및 분석을 수행 했다. 또한 HAZOP의 수행 및 위험원 식별 활동의 프로세스 모델을 제시함으로써 실질적인 위험원 식별 활동의 수행에 도움이 될 것으로 기대한다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2003.12a
/
pp.417-421
/
2003
2000년 고기형 등이 발표한 땋임군상에서의 공개키 암호시스템은 후속적으로 다양한 이론적 분석 및 응용기법이 연구되고 있다 땋임군에서의 공개키 암호화기법과 서명기법은 기존에 제안되었으나 개인식별기법은 제안된 바가 없다. 본 논문에서 우리는 땋임군에서의 서명기법에 바탕을 둔 개인식별기법을 제안하고 그 안전성을 증명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.