• Title/Summary/Keyword: 시스템 섭동

Search Result 147, Processing Time 0.023 seconds

Some Asymptotic Stability Theorems in the perturbed Linear Differential System

  • An, Jeong-Hyang;Oh, Yong-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • We investigate sorry: asymptotic stabilities of the zero solution for the perturbed linear differential system dx/dt=A(t)x+e(t, x)+f(t,x), by using Perron's method and integral inequalities, etc. and we also find some sufficient conditions that ensure some asymptotic stabilities of the zero solution of the system And hence we obtain several results of it.

  • PDF

Analysis of Liquid-Propellant Rocket Engine(KL-3) Unstable Combustion Characteristics of Vertical Installation (수직장착에서의 액체추진제 로켓엔진(KL-3) 불안정 연소특성에 관한 연구)

  • 하성업;권오성;이정호;김병훈;한상엽;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • To perform combined tests with propellant feeding system and engine, which were developed for KSR-III launcher, vertical test stand was organized and a series of hot-fire combustion tests were carried out with engines of several injector faceplate types. In hot-fire tests in vertical installation, combustion instabilities occurred right after ignition with an engine without baffle, and such combustion instabilities did not occur at ignition add during mainstage operation for an engine with STS or composite baffle. 1.regular and temporary pressure pulsations(popping) were detected during steady operation with a baffle engine, however a development to combustion instabilities with resonant mode was highly suppressed by baffle. With a series of tests, it was confirmed that the last developed engine, which has composite baffle, was operated successfully in KSR-III flight propulsion system.

Application of Perturbation-based Sensitivity Analysis to Nuclear Characteristics (섭동론적 감도해석 이론의 원자로 핵특성에의 응용)

  • Byung Soo Lee;Mann Cho;Jeong Soo Han;Chung Hum Kim
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 1986
  • An equation of material number density sensitivity coefficient is derived using first-order perturbation theory. The beginning of cycle of Super-Phenix I is taken as the reference system for this study. Effective multiplication factor of the reference system is defined as system response function and fuel enrichment and fuel effective density are chosen for the variation of reference input data since they are described by material number density which is a component of Boltzmann operator. The nuclear computational code system (KAERI-26 group cross section library/1DX/2DB/PERT-V) is employed for this calculation. Sensitivity coefficient of fuel enrichment on effective multiplication factor is 4.576 and sensitivity coefficient of effective fuel density on effective multiplication factor is 0.0756. This work shows that sensitivity methodology is lesser timeconsuming and gives more informations on important design parameters in comparison with the direct iterative calulation through large computer codes.

  • PDF

Triple Folded Omnidirectional Microstrip Antenna for GBAS (GBAS용 3중 폴디드 무지향성 마이크로스트립 안테나)

  • Ju, Dae-Keun;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.83-94
    • /
    • 2021
  • In this paper, we proposed a microstrip antenna (center frequency 118 MHz) with an omnidirectional radiation pattern that can replace the antennae used in VDB systems in GBAS. First, to obtain an omnidirectional radiation pattern from a microstrip antenna, we constructed a folded antenna. We then designed a miniaturized triple-folded antenna using perturbation effects. Thus we obtained suitable characteristics with a S11 of -13.91dB, -10 dB bandwidth of 1.5 MHz (1.27%) in the center frequency of 118 MHz. Furthermore, in the yz-plane and xy-plane, the component exhibits an omnidirectional radiation pattern, and the size of the antenna achieves miniaturization of 64.2% compared to the reference antenna. Finally, it is suitable as an antenna for VDB systems in GBAS.

A Comparative Study of Frequency Response Models for Pressure Transmission System (압력전달시스템을 위한 주파수응답모델들의 비교 연구)

  • Kim, Hyeonjun;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • Dynamic pressure transducer needs to be flush-mounted on hardware due to frequency response characteristics of pressure transmission system. However, it is sometimes necessary to be mounted in recessed configuration due to insufficient space for sensor installation and for protection of sensor from thermal damage. Dynamic response characteristics should be considered due to distortion of original dynamic pressure signal in the pressure transmission system. In this study, small perturbation model and 2nd order reduced model were compared with experiments and a guideline for selecting a frequency response model was suggested.

Design and Application of Emergency Blockage System for Engine Part at IPPT and SQT (IPPT, SQT에서의 엔진부 비상정지 시스템 설계 및 운용)

  • 하성업;이중엽;정태규;한상엽
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.44-53
    • /
    • 2003
  • A vertical hot-firing test facility was established to carry out the IPPT(Integrated Propulsion Performance Test) and SQT(Stage Qualification Test) of KSR-III(Korea Sounding Rocket-III). The components for actual launcher were mostly used, hence these tests were carried out under the condition of relatively lower safety margin. To perform hot-firing tests with the maximum safety, an engine emergency blockage system was investigated and applied. An emergency blockage system using combustion chamber pressures and acceleration signals was set up to monitor ignition delay and fail, flame out, propellant feeding status, unstable combustion and excessive structural vibration. With such a system, the test safety could be secured by rapid judgement and follow-up measures, which made IPPT and SQT be safely completed.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

SATELLITE ATTITUDE SENSING MODEL AND THEIR S/W DEVELOPMENT (인공위성 자세감지 모델과 그 S/W 개발)

  • 김영신;안웅영;김천휘
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • We have developed an attitude sensing S/W system, one of modules of Mission Analysis System(MAS), which simulates attitude sensing data as almost the same as the real sensor of a satellite in orbit. When attitude elements($alpha,delta$) of a satellite and positions of Earth, Moon, and Sun are given, the S/W system calculates look angles and dihedral angles of each celestial bodies relative to the rotations axis of the satellite. It consists of two sub-modules : One is ephemeris service module which consider the perturbations of four planets(Venus, Mars, Jupiter, Saturn) for positions of Sun and Moon and 4 $\times$4 earth gravitational potential terms for a satellite's position. The other is attitude simulation module which generates attitude sensing data. Varying the rotational axis of a satellite and it's orbital elements, we simulated the generating attitude sensing data with this S/W system and discussed their results.

  • PDF

Robust Stabilization of Discrete Singular Systems with Parameter Uncertainty and Controller Fragility (변수 불확실성과 제어기 악성을 가지는 이산 특이시스템의 강인 안정화)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents not only the robust stabilization technique but also robust non-fragile controller design method for discrete-time singular systems and static state feedback controller with multiplicative uncertainty. The condition for the existence of robust stabilization controller, the admissible controller design method, and the measure of non-fragility in controller are proposed via LMI(linear matrix inequality) approach. In order to get the maximum measure of non-fragility, the obtained sufficient condition can be rewritten as LMI optimization form in terms of transformed variable. Therefore, the presented robust non-fragile controller for discrete-time singular systems guarantees robust stability in spite of parameter uncertainty and controller fragility. Finally, a numerical example is given to show the validity of the design method.