Kim, Min-Ji;So, Byung-Jin;Kim, Kyung Wook;Kwon, Hyun-Han
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.9-9
/
2016
많은 연구들에서 단변량 수문 변량들에 대한 불확실성 분석이 이루어지고 있지만, 다변량에 대한 불확실성에 관한 연구는 아직까지 정확하게 이루어지고 있지 않은 실정이다. 이에 본 연구에서는 갈수기(12월~4월)의 강수, 온도와 남방진동(El Ni?o-Southern Oscillation, ENSO)과 같은 수문기상학적 변량들 사이의 시간에 따른 변동 구조를 조사하고, 식별된 패턴을 이용한 강우와 온도의 예측 향상 가능성을 살펴보았다. 수문기상학적 변수간의 시변성 구조를 이해하기 위해서 각각의 단변량 매개변수와 시간에 따라 변화하는 Copula 매개변수를 동시에 추정할 수 있는 Copula 함수 기반의 새로운 다변량 비정상성 모델을 개발하고자 한다. 강우와 온도의 비정상정 단변량 분포를 생성하기 위해 ENSO 지표 또는 시계열 예측인자와 함께 시변성 모델을 적용할 수 있다. 최종적으로, 확인된 시간 변동적인 구조와 연관된 종관 패턴을 나타내고 논의하고자 한다.
In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.
이 논문에서는 매개변수(parameter)들이 시간에 따라 변하는 선형 시변 시스템(linear time-varying system)에서 시스템의 안정도(stability)를 보장할 수 있는 매개변수들의 변동영역(perturbation region of parameters)에 대한 충분조건을 시간영역에서 Lyapunov 방법을 사용하여 구하였다. 그리고 이 충분조건을 만족하는 매개변수 변동영역을 비선형 계획법(nonlinear programing)을 이용하여 구하는 방법을 제시하였다. 시뮬레이션 결과 이 방법으로 지금까지 이루어져 왔던 다른 연구 결과들보다 더 넓고 다양한 매개변수 변동영역을 구할 수 있었다.
In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.
In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.
A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.
The parameters of the storage function model (SFM) are taken as constants, while they have different values every rainfall events and time of the runoff. Therefore, the results of the SFM show remarkably large errors in general. In this study, the modified sorage function model (MSFM), in which the time variant parameters are introduced, is proposed to improve the SFM which is a conceptual rainfall-runoff model. The fuzzy reasoning is applied as a real-time control method of the time-variant parameters of the proposed model. The applicability of the MSFM was examined in the Bochung river, a tributary of Geum river in Korea. The pattern of predicted outflow hydrograph and peak outflow by the MSFM with fuzzy control are much similar to the measured values in comparison with the results produced by the SFM.
The stability condition of linear discrete interval systems with a time-varying delay time is considered. The considered system has interval system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. Compared to previous results, the stability issue on the interval systems is expanded to time-varying delay. Furthermore, the new condition can imply the existing results on the time-invariant case and show the relation between interval time-varying delay time and stability of the system. The proposed condition can be applied to find the stability bound of the discrete interval system. Some numerical examples are given to show the effectiveness of the new condition and comparisons with the previously reported results are also presented.
Proceedings of the Korean Nuclear Society Conference
/
1997.05a
/
pp.159-165
/
1997
영광 3호기에서 발생한 부하탈락으로 인만 과도현상 때의 운전 데이터를 이용하여 전체의 운전 영역에서 잘 맞는 증기 발생기의 모델을 개발하였다. 모델링 기법으로는 유전자 알고리즘이 사용되었으며, 모델은 물리변수(물리적 의미를 갖는 변수)를 갖는 함수들로 구성하였다. 과도현상시의 데이터를 이용하여 증기발생기의 시변 특성을 직접 추정하기 위해 일부 물리변수를 급수온도에 대해 비선형으로 정의하였다. 잘 알려져 있는 실측 데이터를 사용하는 모델링 기법들은 선형 시불변 계에서만 적용이 가능하여 증기발생기와 같이 강한 시변 특성을 보이는 계의 모델링에 과도현상 때의 데이터를 적용할 수 없다. 물리변수를 직접 추정하면 물리적 원칙에 의해 값의 범위가 주어지며 운전 경험 또는 개략적인 데이터의 분석에 의해 예상되는 값의 범위를 비교적 작게 정할 수 있으므로 유전자 알고리즘의 적용에 유리하다. 얻어진 모델은 영광 3호기 운전원 훈련용 시뮬레이터와 발전소 설계 자료에 의해 검증되었다. 이 모델은 제어기의 설계 및 조정과 증기유량 측정 계열의 비선형 교정에도 사용될 수 있다.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.47
no.4
/
pp.1-6
/
2010
In this paper, we present a new delay-dependent and parameter-dependent robust stability condition for uncertain singular systems with polytopic parameter uncertainties and time-varying delay. The robust stability criterions based on parameter-dependent Lyapunov function are expressed as LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general algorithm for both singular systems and non-singular systems. Finally, numerical examples are presented to illustrate the feasibility and less conservativeness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.