• Title/Summary/Keyword: 시변 변수

Search Result 65, Processing Time 0.034 seconds

Identifying the Time-Varying Relationships between Hydro-meteorological Variables in the Winter Dry Season (갈수기 수문기상학적 변수들 사이의 시변동성 평가)

  • Kim, Min-Ji;So, Byung-Jin;Kim, Kyung Wook;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.9-9
    • /
    • 2016
  • 많은 연구들에서 단변량 수문 변량들에 대한 불확실성 분석이 이루어지고 있지만, 다변량에 대한 불확실성에 관한 연구는 아직까지 정확하게 이루어지고 있지 않은 실정이다. 이에 본 연구에서는 갈수기(12월~4월)의 강수, 온도와 남방진동(El Ni?o-Southern Oscillation, ENSO)과 같은 수문기상학적 변량들 사이의 시간에 따른 변동 구조를 조사하고, 식별된 패턴을 이용한 강우와 온도의 예측 향상 가능성을 살펴보았다. 수문기상학적 변수간의 시변성 구조를 이해하기 위해서 각각의 단변량 매개변수와 시간에 따라 변화하는 Copula 매개변수를 동시에 추정할 수 있는 Copula 함수 기반의 새로운 다변량 비정상성 모델을 개발하고자 한다. 강우와 온도의 비정상정 단변량 분포를 생성하기 위해 ENSO 지표 또는 시계열 예측인자와 함께 시변성 모델을 적용할 수 있다. 최종적으로, 확인된 시간 변동적인 구조와 연관된 종관 패턴을 나타내고 논의하고자 한다.

  • PDF

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

A stability region of linear time-varying systems (선형 시변 시스템의 안정도 영역)

  • 최종호;장태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.130-134
    • /
    • 1987
  • 이 논문에서는 매개변수(parameter)들이 시간에 따라 변하는 선형 시변 시스템(linear time-varying system)에서 시스템의 안정도(stability)를 보장할 수 있는 매개변수들의 변동영역(perturbation region of parameters)에 대한 충분조건을 시간영역에서 Lyapunov 방법을 사용하여 구하였다. 그리고 이 충분조건을 만족하는 매개변수 변동영역을 비선형 계획법(nonlinear programing)을 이용하여 구하는 방법을 제시하였다. 시뮬레이션 결과 이 방법으로 지금까지 이루어져 왔던 다른 연구 결과들보다 더 넓고 다양한 매개변수 변동영역을 구할 수 있었다.

  • PDF

Stability Condition for Discrete Interval Time-varying System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.475-481
    • /
    • 2016
  • In this paper, the new stability condition of linear discrete interval time-varying systems with time-varying delay time is proposed. The considered system has interval time-varying system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. The restricted stability issue on the interval time-invariant system is expanded to interval time-varying system and a powerful stability condition which is more comprehensive than the previous is proposed. As a results, it is possible to avoid the introduction of complex linear matrix inequality (LMI) or upper solution bound of Lyapunov equation in the derivation of sufficient condition. Also, it is shown that the proposed result can include the many existing stability conditions in the previous literatures. A numerical example in the pe revious works is modified to more general interval system and shows the expandability and effectiveness of the new stability condition.

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

New Stability Conditions for Positive Time-Varying Discrete Interval System with Interval Time-Varying Delay Time (구간 시변 지연시간을 갖는 양의 시변 이산 구간 시스템의 새로운 안정 조건)

  • Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.

A Study on the Introduction of Fuzzy Theory to the Adjustment of Time-Variant Parameter of Storage Function Method (저류함수법의 시변성 매개변수 조정에 퍼지이론 도입에 관한 연구)

  • 이정규;이창해
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.149-160
    • /
    • 1996
  • The parameters of the storage function model (SFM) are taken as constants, while they have different values every rainfall events and time of the runoff. Therefore, the results of the SFM show remarkably large errors in general. In this study, the modified sorage function model (MSFM), in which the time variant parameters are introduced, is proposed to improve the SFM which is a conceptual rainfall-runoff model. The fuzzy reasoning is applied as a real-time control method of the time-variant parameters of the proposed model. The applicability of the MSFM was examined in the Bochung river, a tributary of Geum river in Korea. The pattern of predicted outflow hydrograph and peak outflow by the MSFM with fuzzy control are much similar to the measured values in comparison with the results produced by the SFM.

  • PDF

Stability Condition for Discrete Interval System with Time-Varying Delay Time (시변 지연시간을 갖는 이산 구간 시스템의 안정조건)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.574-580
    • /
    • 2015
  • The stability condition of linear discrete interval systems with a time-varying delay time is considered. The considered system has interval system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. Compared to previous results, the stability issue on the interval systems is expanded to time-varying delay. Furthermore, the new condition can imply the existing results on the time-invariant case and show the relation between interval time-varying delay time and stability of the system. The proposed condition can be applied to find the stability bound of the discrete interval system. Some numerical examples are given to show the effectiveness of the new condition and comparisons with the previously reported results are also presented.

과도현상 데이터를 이용한 영광 3호기 증기발생기 모델 개발

  • 이용관;조병학;이명수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.159-165
    • /
    • 1997
  • 영광 3호기에서 발생한 부하탈락으로 인만 과도현상 때의 운전 데이터를 이용하여 전체의 운전 영역에서 잘 맞는 증기 발생기의 모델을 개발하였다. 모델링 기법으로는 유전자 알고리즘이 사용되었으며, 모델은 물리변수(물리적 의미를 갖는 변수)를 갖는 함수들로 구성하였다. 과도현상시의 데이터를 이용하여 증기발생기의 시변 특성을 직접 추정하기 위해 일부 물리변수를 급수온도에 대해 비선형으로 정의하였다. 잘 알려져 있는 실측 데이터를 사용하는 모델링 기법들은 선형 시불변 계에서만 적용이 가능하여 증기발생기와 같이 강한 시변 특성을 보이는 계의 모델링에 과도현상 때의 데이터를 적용할 수 없다. 물리변수를 직접 추정하면 물리적 원칙에 의해 값의 범위가 주어지며 운전 경험 또는 개략적인 데이터의 분석에 의해 예상되는 값의 범위를 비교적 작게 정할 수 있으므로 유전자 알고리즘의 적용에 유리하다. 얻어진 모델은 영광 3호기 운전원 훈련용 시뮬레이터와 발전소 설계 자료에 의해 검증되었다. 이 모델은 제어기의 설계 및 조정과 증기유량 측정 계열의 비선형 교정에도 사용될 수 있다.

  • PDF

Parameter-dependent Robust Stability of Uncertain Singular Systems with Time-varying Delays (시변 시간지연을 가지는 불확실 특이시스템의 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, we present a new delay-dependent and parameter-dependent robust stability condition for uncertain singular systems with polytopic parameter uncertainties and time-varying delay. The robust stability criterions based on parameter-dependent Lyapunov function are expressed as LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general algorithm for both singular systems and non-singular systems. Finally, numerical examples are presented to illustrate the feasibility and less conservativeness of the proposed method.