DOI QR코드

DOI QR Code

Stability Condition for Discrete Interval System with Time-Varying Delay Time

시변 지연시간을 갖는 이산 구간 시스템의 안정조건

  • Han, Hyung-seok (Department of Electronic Engineering, Gachon University)
  • 한형석 (가천대학교 전자공학과)
  • Received : 2015.10.13
  • Accepted : 2015.12.09
  • Published : 2015.12.30

Abstract

The stability condition of linear discrete interval systems with a time-varying delay time is considered. The considered system has interval system matrices for both non-delayed and delayed states with time-varying delay time within given interval values. The proposed condition is derived by using Lyapunov stability theory and expressed by very simple inequality. Compared to previous results, the stability issue on the interval systems is expanded to time-varying delay. Furthermore, the new condition can imply the existing results on the time-invariant case and show the relation between interval time-varying delay time and stability of the system. The proposed condition can be applied to find the stability bound of the discrete interval system. Some numerical examples are given to show the effectiveness of the new condition and comparisons with the previously reported results are also presented.

본 논문에서는 상태변수에 시변 지연시간이 있는 선형 이산 구간 시스템의 안정조건을 고려한다. 고려한 시스템은 시스템 행렬과 지연 상태변수에 대한 시스템 행렬이 구간 행렬로 표현되며, 지연시간도 구간에 대하여 시변인 특성을 갖는다. 제안된 안정조건은 리아프노프 안정 이론에 의하여 유도되며 매우 간단한 부등식의 형태로 표현된다. 기존의 시불변 구간행렬의 안정성 문제를 시변 지연 시간을 갖는 시스템으로 확장한 것이다. 더불어, 새로운 안정조건은 시불변 경우에 대하여 연구된 기존 결과를 포함할 수 있으며, 구간 시변 지연 시간과 시스템의 안정성과의 연관관계를 나타내는 것이다. 제안된 조건은 구간시스템에 대한 교란 변수의 크기를 구하는 문제에도 응용될 수 있다. 수치예제를 통하여 새로운 안정조건의 효용성을 확인할 수 있으며, 기존에 발표된 결과들과의 비교도 이루어진다.

Keywords

References

  1. T. Mori, N.Fukuma and M.Kuwahara, “Delay-independent stability criteria for discrete-delay systems,” IEEE Transactions on Automatic Control, Vol. 27, No. 4, pp. 964-966, 1982. https://doi.org/10.1109/TAC.1982.1103030
  2. D. Debeljkovic and S.Stojanovic, “The stability of linear discrete time delay systems over a finite time interval: an overview,” Scientific Technical Review, Vol. 61, No. 1, pp. 46-55, 2011.
  3. D. Debeljkovic, “Further results on stability of linear discrete time delay systems,” Scientific Technical Review, Vol. 60, No. 2, pp. 48-59, 2010.
  4. J. Liu and J. Zhang, "Note on stability of discrete-time time-varying delay systems," IET Control Theory & Applications, Vol. 6, No. 2, p. 335, 2012. https://doi.org/10.1049/iet-cta.2011.0147
  5. S. Stojanovic, D. Debeljkovic and I. Mladenovic, “Simple exponential stability criteria of linear discrete time-delay systems,” Serbian Journal of Electrical Engineering, Vol. 5, No. 2, pp. 191-198, 2008. https://doi.org/10.2298/SJEE0802191S
  6. C. H. Lee, T.-L. Hsien and C.-Y. Chen, "Robust stability of discrete uncertain time-delay systems by using a solution bound of the Lyapunov equation," Innovative Computing, Information and Control (ICIC Express Letters, Vol. 8, No. 5, pp. 1547-1552, 2011.
  7. D. L. Debeljkovic and S. Stojanovic, “The stability of linear discrete time delay systems in the sense of Lyapunov: an overview,” Scientific Technical Review, Vol. 60, No. 3, pp. 67-81, 2010.
  8. N. S. Rousan and K. Jordan, "Stability of square interval matrices for discrete time systems," Engineering of Journal of the Universityof Qatar,Vol.14, pp.127-135, 2001.
  9. C. H. Lee and T. L. Hsien, “New sufficient conditions for the stability of continuous and discrete time-delay interval systems,” Journal of Franklin Institute, Vol. 334B, No. 2, pp. 233-240, 1997.
  10. P. Liuy, “Stability of continuous and discrete time-delay grey systems,” International Journal of Systems Science, Vol. 32, No. 7, pp. 947-952, 2001. https://doi.org/10.1080/00207720010005636
  11. P. L. Liu and W.-J. Shyr, “Another sufficient condition for the stability of grey discrete-time systems,” Journal of the Franklin Institute, Vol. 342, No. 1, pp. 15-23, Jan. 2005. https://doi.org/10.1016/j.jfranklin.2004.07.008
  12. J. Fang Han, J. Qing Qiu and J. Hua Zhai, "Stability analysis for perturbed discrete dynamic interval systems with time delay," in Second International Conference on Innovative Computing, Information and Control (ICICIC 2007), Kumamoto: Japan, pp. 587-587, Sep. 2007.
  13. J. Fang Han, H. Zhu Tian and Z. Y. Meng, "Criteria for robust stability of discrete-time dynamic interval systems with multiple time-delays," in Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao: China, pp. 11-14, 2010.
  14. H. S. Han, “New stability conditions for positive time-varying discrete interval system with interval time-varying delay time,” Journal of Korea Navigation Institute, Vol. 18, No. 5, pp. 501-507, Oct. 2014.
  15. R. A. Hornand and C. R. Johnson, Matrix Analysis, Cambridge, UK: Cambridge University Press, pp. 491, 1985.
  16. Z. Gajic and M. Lelic, Modern Control Systems Engineering, Upper Saddle River, NJ: Prentice-Hall, pp. 179-183, 1996.