• Title/Summary/Keyword: 시멘트 모르타르의 품질

Search Result 61, Processing Time 0.028 seconds

Evaluation of the Basic Properties of Materials for Application of Functional Plaster Mortar (기능성 미장 모르타르의 현장 적용을 위한 재료별 기초 물성에 관한 평가)

  • Cho, Do-Young;Kim, Gyu-Yong;Miyauchi, Hiroyuki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2012
  • The development of building must be accompanied with construction technology and performance of materials. In particular, wet processes have a high level of dependence on manpower and a low level of diversification of materials used. This study aimed to determine the applicability of various materials for wet process, mechanized construction and eco-friendly building materials through a comparison with dry premixed mortar. As a result, it was found that resin plaster and gypsum plaster's strength is lower than that of dry cement mortar, but their mechanization application, construction simplification, smoothness and bond strength are higher than that of dry cement mortar. And estimate that is valid as workability, bonding strength, eco-friendly building material in occasion of gypsum plaster.

Analyzing the Engineering Properties of Cement Mortar Using Mixed Aggregate with Reject Ash (혼합골재에 리젝트애시를 프리믹스하여 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.247-252
    • /
    • 2017
  • The aim of this research is the feasibility analysis of the reject ash premixed cement mortar with combined aggregate. Namely, for the combined aggregate with two different qualities of aggregates, a fundamental properties of cement mortar was evaluated depending on various replacing ratios of reject ash(Ri). According to the experimental results, the combined aggregate consisted with low-quality aggregate and sea sand did not change the flow value depending on the reject ash while the combined aggregates consisted with low quality aggregate and sea sand; and consisted exploded debris sand and sea sand the increasing reject ash increased the air content with increased replacing ratio of reject ash. In the case of compressive strength, as the replacing ratio of reject ash was increased, the compressive strength was increased. It is considered that when 5% of reject ash replacing ratio made similar quality of cement mortar with favorable quality aggregate, hence, it can be suggested that 5% replacement of reject ash for desirable fluidity and compressive strength of concrete.

Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type (탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성)

  • Han, Cheon-Goo;Lee, Dong-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • In this research, based on the condition of using desulfurization gypsum(FGD) as a stimulator for high-volume blast furnace slag cement mortar, sieving and heating process methods of removing activated carbon in FGD were compared with the non-processed FGD and recycled and natural fine aggregates were compared for suitable aggregate to be used. According to the result of experiment, sieving with 0.3mm was more efficient than $500^{\circ}C$ heating for processing the FGD, and recycled fine aggregate showed more favorable result than natural fine aggregate at the FGD content was 5 to 10%. On the other hand, the mortar mixture including recycled fine aggregate had a high drying shrinkage, and absorption ratio, and thus specific limitations on applying recycled fine aggregate should be required.

Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상)

  • Baek, Byung Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.193-199
    • /
    • 2015
  • As a solution of both environmental issue of reducing carbon dioxide emission and sustainable issue of exhausting natural resources, in concrete industry, many research on recycling various by-products or industrial wastes as the concrete materials has been conducted. The aim of this research is feasibility analysis of additional reaction with ordinary Portland cement and flue gas desulfurization gypsum based on the blast furnace slag and recycled fine aggregate based mortar to achieve the normal strength range. Consequently, in the case of mortar replaced 10% FGD and 30% OPC for BS, 80% of plain OPC mortar's compressive strength was achieved. Furthermore, when the water-to-binder ratio is decreased to keep the practically similar level of flow, it is expected to be achieve the equivalent compressive strength to plain OPC mortar.

Hardened properties of the cement based Basalt powder sludge mortar for surface preparation (시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성)

  • Jang, Myung-Houn;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • This study aimed to evaluate of the hardened properties (mortar consistency, setting time, absorption properties, drying shrinkage, and bond strength) of the basalt powder sludge mortar recycling a basalt powder sludge occurred during the manufacture process of basalt stone as a replacing material for the sea-sand used to cement filling compound for surface preparation. The hardened mortar made of the basalt powder sludge showed an enhanced performance or similar with the properties of normal mortar used to cement filling compound for surface preparation. But, the drying shrinkage was increased more than a normal cement mortar in the hardened mortar made of the basalt powder sludge since curing 8 - 9days. And the bond strength is low in the hardened mortar used the basalt powder sludge. On the whole, properties of the hardened mortar used the basalt powder sludge correspond to the required minimum quality criterion in the KS F 4716 'cement filling compound for surface preparation'.

A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products (산업부산물을 사용한 알칼리 활성 무시멘트 모르타르의 품질특성에 관한 연구)

  • Kwon, Yong-Hun;Kwon, Yeong-Ho;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This study investigated quality properties of alkali activated cement free mortar using industrial by-product such as cement kiln dust(CKD), silica fume(SF) and quartz sand powder(SP) to compare with previous research about blast furnace slag(BS) and fly ash(FA). The results were as following. All materials were effective to increase compressive strength, however they showed different tendency on flowability. CKD and SP increased flowability, but on the other hand SF did not because it's blain was great difference with other materials. Flowability and compressive strength were related with grading distributions of binders because CKD, SP and SF which had small particle size filled up BS and FA. Application of industrial by-products with various grading distributions could be effective for the high early strength and flowability of alkali activated cement free mortar using BS.

An Experimental Study for Characteristics Evaluation of Cement Mortar Using Infrared Thermography Technique (적외선 화상기법을 이용한 시멘트 모르타르 특성의 실험적 평가)

  • Kwon, Seung-Jun;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.53-59
    • /
    • 2010
  • Recently, NDTs (Non-Destructive Techniques) using infrared camera are widely studied for detection of damage and void in RC (reinforced concrete) structures and they are also considered as an effective techniques for maintenance of infrastructures. The temperature on concrete surface depends on material and thermal properties such as specific heat, thermal conductivity, and thermal diffusion coefficient. Different porosity on cement mortar due to different mixture proportions can show different heat behavior in cooling stage. The porosity can affect physical and durability properties like strength and chloride diffusion coefficient as well. In this paper, active thermography which uses flash for heat induction is utilized and thermal characteristics on surface are evaluated. Samples of cement mortar with W/C (water to cement ratio) of 0.55 and 0.65 are prepared and physical properties like porosity, compressive strength, and chloride diffusion coefficient are evaluated. Then infrared thermography technique is carried out in a constant room condition (temperature $20{\sim}22^{\circ}C$ and relative humidity 55-60%). The mortar samples with higher porosity shows higher residual temperature at the cooling stage and also shows reduced critical time which shows constant temperature due to back wall effect. Furthermore, simple equation for critical time of back wall effect is suggested with porosity and experimental constants. These characteristics indicate the applicability of infrared thermography as an NDT for quality assessment of cement based composite like concrete. Physical properties and thermal behavior in cement mortar with different porosity are analyzed in discussed in this paper.

A Study on the Influence of Blast Furnace Slag from Various Areas to the Performance of surface coating Dry-Mortar (산지별 고로슬래그미분말이 바닥용 건조시멘트 모르타르의 성능 발현에 미치는 영향에 관한 연구)

  • Cho, Do-Young;Seo, Shin-Seok;Kim, Jung-Hwan;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.445-446
    • /
    • 2009
  • This study investigated properties of blast furnace slag from various areas and fundamental properties and length change on the case that the blast furnace slag was applied to surface coating dry-mortar.

  • PDF

Influence of changes in cement fineness on lean mixture mortar quality (시멘트 분말도 변화가 빈배합 모르타르의 품질에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Kim, Yeong-Tae;Jang, Deok-Bae;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.100-101
    • /
    • 2016
  • The fineness degree of Ordinary Portland Cement (OPC henceforth) usually used in Korea's construction sites, is designated as over 2,800㎠/g. But the higher the fineness, the surface area of hydration reaction on water increases as well, resulting in large early age strength and high-intensity; so the trend is to prefer a high degree of fineness. But from a pore-space filling perspective, fine-particled cement is not always beneficial to intensity. Therefore in this study artificial modifications were given to cement fineness to analyze the effect of various fineness changes on the liquidity, air quantity and intensity of lean mixture cement mortar. As a result, the greater the degree of fineness, the better the cement was, with fine particle+OPC having the most satisfactory results due to consecutive particle distribution.

  • PDF

Effect of quality enhance of blast furnace slag-based mortar by utilizing cement (고로슬래그 미분말 기반 모르타르의 품질향상에 미치는 시멘트치환의 영향)

  • Song, Yuan-Lou;Lu, Liang-Liang;Han, Dong-Yeop;Baek, Byung-Hoon;Han, Min-Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.154-155
    • /
    • 2014
  • The object of this research is showing the effect of additional hydration of BS with OPC and less amount of gypsum in WA for the binder of BS with RFA mortar on strength development. The test performed was using factors of 0, 10, 30, and 50 % of OPC replacement for effect on strength development with additional stimulation.

  • PDF