• Title/Summary/Keyword: 시동 안정성

Search Result 34, Processing Time 0.022 seconds

Study on the Braking Characteristics of Starting System Used for Initial Spin-up of Gas Turbine (가스터빈 초기 구동용 시동시스템의 제동특성 연구)

  • Song, Ju-Young;Park, Jun-Cheol;Lee, Ki-Hoon;Kim, Sung-Hyun;Nam, Sam-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.379-382
    • /
    • 2011
  • Engine test as well as unload test of starting motor itself was performed to evaluate the braking characteristics of starting system used for initial spin-up of gas turbine for power generation. Through the experimental evaluation of the braking performance with the capacity of braking resistor of the starting motor, we have achieved quantitative data to secure robust braking characteristics in emergency during the starting period of the gas turbine. It is possible to establish a capacity selection criterion of braking resistor to ensure the starting reliability of the gas turbine.

  • PDF

Analysis of Transient Characteristics for Turbopump-fed Liquid Propellant Rocekt Engine in Start-up (터보펌프식 액체 로켓 엔진의 시동 과도 특성 해석)

  • Son, Min;Kim, Duk-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.34-37
    • /
    • 2010
  • One dimensional transient analysis was studied for turbopump-fed liquid propellant rocket engine(LRE) system in starting using AMESim. The effects of timing of gas generator fuel valve opening and gas generator ignition to start-up stability were researched for open cycle type system using LOX/RP-1 to propellants. Result show that the parameters and sequence on start-up should be considered to design optimized turbopump-fed LRE system.

  • PDF

Preliminary Study of a Turbopump Pyro Starter (터보펌프 파이로 시동기 기초연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The feasibility study into the development of turbine spinners, which start up the turbo-pump, has been carried out and the design requirements and parameters ranges have been presented. Turbine spinners use the solid propellant as such composite propellant based AN compound with high energy plasticizers, coolants, and phase stabilizer which relieves a sensible volume change due to the phase transformation of AN near room temperature. Propellants which have a homing rate of $0.2{\sim}0.3\;mm/s$ and pressure exponent ranged from 0.3 to 0.6, showed stable burn-out in the standard motor tests. Both the magnitude of ignition energy and its thermal transfer mechanism have been proved to have a tangible effect on the ignition of the pyre starter, and the results of this study showed that a flame temperature of 1400K would be quite adequate to get a stable ignition for the AN composite propellant.

Study of High Altitude Operation for Air Swirl Injector in Tangential Swirl Combustor (Tangential Swirl 연소기에 적용된 스월인젝터의 고고도 운전성능 연구)

  • Park, Hee-Ho;Ryu, Se-Hyun;Koo, Hyun-Cheol;Lee, Seong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.825-828
    • /
    • 2010
  • APU for aircraft is operated under severe condition as high altitude and low temperature, and demand high reliability in flight. This study is to be verified of the ignition and the combustion stability of APU under the harsh conditions. The basic data obtained in combustion rig test were directly applied to the altitude test with a engine. That start logic was obtained in ground development test. The results of altitude test show that air swirl injector has good operation and ignition performance at 20kft, hot/cold($-40^{\circ}C$) day.

  • PDF

터보펌프 공급식 액체 로켓엔진의 시동 과도 해석

  • Park, Soon-Young;Nam, Chang-Ho;Moon, In-Sang;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • There are two definite objects for developing the startup transient of liquid rocket engine. One is to achieve the repeatability of startup to ensure higher reliability, and the other is to reduce the time of the startup transient. Typically in the initial phase of engine development as we are currently opposing, it is hard to estimate engine startup time due to the lack of experiences. In this work, a startup transient analysis tool was developed with the introduction of the mathematical model for each component of pump-fed liquid rocket engine system. Startup transient was investigated for a 25 ton class gas generator cycle engine to find necessary time for reaching steady state from startup and this enabled to reveal dynamic characteristics of the engine.

  • PDF

A Transient Model Analysis of a Fluorescent Lamp at Startup Time (형광램프의 기동시 과도특성 모델 해석)

  • 함중걸;백수현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.52-56
    • /
    • 1996
  • Fluorescent lamps are widely accepted to energy efficient commercial lighting applications. In designing a fluorescent lamp system, a ballast design heavily relies on the characteristic of a fluorescent lamp under consideration. Especially, at startup time, the transient characteristic of a fluorescent lamp puts much tighter specification of a design. In this paper, based on the transient characteristic at the startup time, a transient behavioral model of a fluorescent lamp is presented with an equivalent circuit. The model is applicable to the wide range of fluorescent lamps provided by different manufacturers. The experimental results are compared with the results provided by PSPICE simulation. The result shows the model is effective In practice. As a result, we could identify more accurate startup constraints to decide the design of either an electro mechanical or an electronic ballast.

  • PDF

Bridge Pier Scour Protection by Sack Gabions (돌망태에 의한 교각세굴 방지)

  • Yun, Tae-Hun;Kim, Dae-Hong;Lee, Ji-Song
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.725-731
    • /
    • 2000
  • Experimental studies were conducted in a clear water condition to investigate the functioning of a sack gabion as a scour countermeasure at bridge piers. For different sizes of fill materials of sack gabions no difference was observed in the initial movement of sack gabions. Significant factors on the dislodging of sack gabions are approaching flow depth and velocity, pier width, and thickness and length of sack gabions. It was observed that the stability of the sack gabions is increased in a collective body of riprap stones than the placement of individual riprap stone. The length of a sack gabion has significant effect on its initial movement and the stability of a sack gabion was found to be increased by lengthening the length of gabions. The experimental results were used to derive formulas sizing gabions for scour protection at bridge piers. piers.

  • PDF

Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine (가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Seok;An, Jae-Won;Park, Young-Joon;Kim, Duk-Sang;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

Start and Idle Combustion Characteristics of Hydrogen Engine for the HALE UAV (고고도 무인기용 수소 엔진의 시동성 및 공회전 연소 특성)

  • Kim, Yong-Rae;Choi, Young;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.22-27
    • /
    • 2015
  • Hydrogen features highest energy density per mass and is expected to be desirable as a fuel of HALE(High altitude long endurance) UAV(Unmanned aerial vehicle). A reciprocating internal combustion engine is known to be a reliable and economic power source for this kind of UAV. Therefore, the combination of hydrogen and engine is worth of doing research. Test bench with 2.4L Spark-Ignited engine was prepared for the experiment in which start and combustion characteristics at idle condition were examined in this study. Stable hydrogen supply system and a universal ECU(Engine control unit) were also utilized for the test engine. Equivalence ratio and spark timings at idle operation were investigated and compared to the data of gasoline engine. The results will be a starting point for full-scale research of hydrogen engine for HALE UAV.

Robust Start-up Circuit for Low Supply-voltage Reference Generator (저전압 기준전압 발생기를 위한 시동회로)

  • Im, Saemin;Park, Sang-Gyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.106-111
    • /
    • 2015
  • Since most reference voltage generator circuits have bi-stable characteristics, it is important to employ a proper start-up circuit to operate a reference generator in the desired state. In this paper, we propose a start-up circuit for a low voltage reference generator. This start-up circuit determines the state of the circuit reliably by measuring the current drawn by BJTs in the circuit, which is well-defined in the desired state. To measure the current using CMOS-compatible devices only, a comparator with an internal offset voltage is used. The reliability of the proposed circuit is confirmed by Monte-Carlo simulations of the start-up operation, which show that, with the proposed start-up circuit, the low voltage reference generator starts reliably with supply voltages over 850mV even in the presence of device mismatches.