본 논문에서는 3차원 인터커넥트(3-D interconnect) 구조를 해석하기 위하여 ADI-유한차분시간영역(ADI-FDTD, Alternating Direction Implicit Finite Difference Time Domain)방법으로 맥스웰 회전방정식(Maxwell's curl equation)을 계산하는 수치 해석 모델을 개발하였다. 3차원 인터커렉트 모델내의 전자기파 문제를 해석하기 위하여 맥스웰 회전 방정식을 ADI-유한차분시간영역방법으로 이산화 하였으며, ADI-유한차분시간영역의 경계에서 발생하는 반사파를 해결하기 위하여 흡수 경계 조건인 완전 정합 층 방법(PML, Perfectly Matched Layer)을 도입하였다. 개발한 ADI-유한차분시간영역방법 및 완전 정합 층의 수치 모델을 검증하기 위하여 3차원 마이크로스트립 전송선(microstrip transmission line) 구조를 3차원 그리드(grid) 구조로 모델링한 후, 시간영역에서 전계 분포를 컴퓨터로 모의 실험하였다. 그리고 본 논문에서 제안한 ADI-유한차분시간영역방법과 종래의 스탠다드 유한차분시간영역방법의 수치적 성능을 정량적으로 비교, 분석하였다.
본 연구는 유한 차분법 시간 영역 알고리듬을 이용하여 배열 안테나의 전자계 특성들을 해석한다. 원통좌표 계에서 맥스웰 방정식의 유한차분 방정식을 정의하였으며, 자유공간과 같은 무한영역해석을 위해서 Mur의 흡수경계조건을 이용하였다. 배열 안테나를 단위격자 구조로 모델링한 후 시간영역에서 필드분포를 도시하였다.
비정상(unsteady) 압축성(compressible) 유동에 의한 공력음향(aeroacoustics)을 모사하여 공력소음원을 해석하기 위해서는 고차(high order)의 정확도와 높은 해상도(resolution)를 가지며, 상대적으로 계산시간을 많이 필요로 하지 않는 외재적(explicit) 유한차분법이 필수적으로 요구된다. 이것은 주어진 차분방식과 격자계로써 공간과 시간상에 존재하는 미소크기의 파동성분들을 충분히 구현하여야 만족할 만한 수치해를 얻을 수 있기 때문이다. 본 연구에서는, 그러한 유한차분법 중 최근에 관심의 대상이 되고있는 삼각(tridiagonal)또는 오각(pentadiagonal) 집적유한차분법(compact finite difference scheme)이 최대의 해상도를 갖도록 하는 수학적인 방법을 개발하고, 이 방법으로써 새롭게 집적유한차분법을 최적화하였다. 개발된 최적화 방법은, 푸리에 해석법(Fourier analysis)을 통하여 파동수(wavenumber) 영역에서 수학적으로 계산된 위상오차(phase error)를 최소화하는 것이며, 이러한 개념과 방법은 본 연구에서 처음으로 집적유한차분법에 적용되었다. 여러가지 절단정확도(truncation order)에 대해서 최적화 된 집적유한차분법들이 실제 공간과 시간상에서 보여주는 정확도와 오차특성을 알아보기 위하여, 이 방법들을 1차원 선형파동방정식에 적용하였고, 이 결과를 통하여 가장 정확하고 효과적인 절단정확도의 집적유한차분법을 선별하였다. 특히, 오각(pentadiagonal)법에 비해 더욱 효율적인 6차 삼각(tridiagonal)법을 1차원 Euler방정식에 적용하여, 비선형 파동에 대한 모사를 수행할 수 있었다.
본 연구는 시간영역 유한 차분법(finite difference-time domain method:FDTD)을 이용하여 마이크로스트립 배열 안테나의 전자계 특성들을 해석한다. 직각좌표계에서 맥스웰 방정식의 유한차분 방정식을 정의하였으며, 자유공간과 같은 무한영역해석을 위해서 Mur의 흡수경계조건을 이용하였다 마이크로스트립 배열 안테나를 단위격자 구조로 모델링한 후 시간영역에서 필드분포를 도시하였다.
본 논문에서는 Haar 웨이블릿 다중분해능 시간영역 해석법과 유한차분 시간영역 해석법을 이용하여 집중소자가 연결된 비선형회로의 해석방법을 제시하였다. 집중소자가 연결된 구조체 해석 방법으로써 집중소자를 제외한 부분에는 Haar 웨이블릿 MRTD 차분방정식을 적용하고 집중소자 부분에는 국부적으로 FDTD 알고리즘을 적용하였다. 종단에 집중소자가 연결된 마이크로스트립 구조체와 단일 다이오드 혼합기를 해석하여 기존의 유한 차분 시간영역 해석법과 비교하였다.
기존에 제시된 Lin 과 Liu (1999)의 VOF 기법을 이용한 내부 조파 방법을 레블셋 기법에 적용하였다. 기하학적으로 유리한 유한요소법을 이용하여, Navier-Stokes 방정식의 공간차분에는 Characteristic Galerkin 기법을, 시간차분에는 Fractional Four-Step 기법을 적용하였다. 그림에 보인 바와 같이 중심(x=0)에서 전파하는 경우, 외부조파에 의한 영역내 재반사 문제가 해결되어 선형파를 의도한 바대로 잘 조파할 수 있었다.
본 논문에서는 전자파의 전파현상의 불연속모델로서 시간영역 유한 차분법의 수치적 성질이 연구된다. 시간 공간의 차원에서 막스웰 방정식을 개구리뜀 근사식으로 나타내므로 수치적인 특성과 의존 영역의 항으로 전자파의 전파현상을 모사한다. 시간영역 유한차분법의 수치적모사과정이 기하학적으로 설명된다. 개구리뜀 근사법의 채용으로 인한 수치적인 분산현상이 예시된다. 개구리뜀 근사법을 기초로 한 시간영역 유한차분법은 원래 계산 결과만을 산출하는 모델이 아니고 묘사적인 모델이므로 전자파 전파현상에 대한 몰리적인 현상을 묘사할 뿐만 아니라 이러한 묘사직언 결과로부터 푸리에 변환을 통하여 주파수 영역에서의 결과를 추출할 수 잇는 매우 유연한 수치해석 방법이다. 그래서 본 수치해석 방법을 이용하여 WR-28과 WR-90 도파관의 E-평면 휠터와 인턱티브 아이리스의 특성성분적 결과를 포함시킨다.
본 논문에서는 3차원 임의 형태 도체 구조의 과도 산란 해석을 위한 결합 적분방정식(CFIE)의 안정된 MOT(Marching-On in Time) 방법을 제안한다. 결합 적분방정 식은 전장 및 자장 적분방정식의 선형적인 결합으로 구성된다. 공식의 전개 과정에서 전방 및 후방, 그리고 중앙 유한 차분을 포함시켜 일반화된 식을 구성하며, 파라미터에 의하여 유한 차분의 종류를 선택할 수 있다. 적분방정식에서 시간에 대한 미분 항을 중앙 유한 차분법으로 근사시키고, 그 외의 시간 의존 항을 평균치로 표현하였을 때, 도체로부터의 과도 산란해는 가장 안정되고 정확하였다. 중앙 유한 차분법을 적용한 MOT 기법에 의한 해를 기존의 방법과 주파수 영역 결합 적분방정식(FD-CFIE)으로부터 얻은 결과의 역 푸리에 변환과 비교한다.
극초음속 여객기와 군사용 항공기에 대한 수요가 증가함에 따라서 새로운 개념의 다양한 추진기관이 연구가 진행되고 개발되어 왔다. 초음속 항공기의 속도 영역은 마하 10-20 정도가 되는데 이 속도 한계를 극복하기 위하여 초음속 연소 램제트 엔진(SCRamjet; Supersonic Combustion Ramjet)이 제안되었다. 스크램 제트를 개발하기 위해서는 연료와 산화제의 혼합 효율 문제, 화염의 안정화 문제, 벽면의 냉각에 관한 문제 등 몇 가지 기본적인 문제들을 해결해야 한다. Univ of Michigan에서 실험한 연소기를 모델로 본 연구에서는 연료와 공기의 혼합에 관한 수치 연구를 수행하였다. 다원 혼합기체에 관한 축대칭 Navier-Stokes 방정식을 지배 방정식을 이용하였고 비평형 화학반응식을 고려하였다. 공간 차분에는 유한 체적법을 이용하였다. 대류 플럭스 항은 Roe의 Upwind FDS 기법을 사용하여 차분하였고 점성항에는 중심 차분법을 이용하였다. 시간 적분법으로는 근사 자코비안과 LU분할 기법을 이용한 완전 내재적 방법이 쓰였다. 난류 모델로는 Mentor에 의해 제안된 2 방정식 k-$\varepsilon$/k-$\omega$ 혼합모델을 사용하였다. 유동장이 실험에서의 찍은 사진과 유사한 모습의 충격파 간섭을 수치 모사하였고 수소가 확산되는 모습과 함께 노즐 lip 주위의 재순환 영역에 대해서 살펴볼 수 있었다.
유한요소법의 전산유체 역학분야에 대한 응용현황을 계산방법과 적용례를 중심으로 정리하였다. 유한요소법의 가장 큰 장점은 복잡한 유동영역을 해석하기 위한 불규칙 요소망(unstructured mesh)의 사용이라 볼 수 있으며 적응적 요소망을 이용하여 계산의 정확도를 높일 수 있는 것 또한 강점이라 할 수 있다. 다만 불규칙 요소망 사용으로 인해 수반되는 대수 방정식 계산시간 및 기억용량의 증가는 conjugate gradient 방법 등을 이용하여 반드시 해결되어야만 한다. 지금 까지 유한요소법을 이용한 계산방법을 개발해 오는 과정을 보면 유한차분법에서 오래 전에 개 발된 방법들을 도입한 경우가 많았으며 특히 난류 및 개발된 경우가 많으며 대부분의 경우 이 들을 그대로 도입, 이용하였다. 반대로 최근에 항공기 동체설계 분야를 중심으로 복잡한 형태의 유동영역을 해석이 요구되는 경우 유한차분법, 특히 유한체적법(finite volume method)에 삼각형 유한요소를 이용한 불규칙 요소망을 도입하여 성공적으로 이용하고 있다. 따라서 전산유체 역 학의 발전을 위하여 두 분야의 유기적인 협조가 필요하며 결과적으로 전산유체 역학기법이 완 전히 기계설계의 한 분야로 정립될 수 있도록 많은 노력이 필요하다고 본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.