• Title/Summary/Keyword: 시간이력 해석

Search Result 427, Processing Time 0.026 seconds

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part A: Analysis for the Explosion Load Characteristics and the Effect of Explosion Loading Rate on Structural Response - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part A: 폭발하중 특징 및 재하속도의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • The gas explosions in offshore installations are known to be very severe according to its geometry and environmental conditions such as leak locations and wind directions, and a dynamic response of structures due to blast loads depends on the load profile. Therefore, a parametric study has to be conducted to investigate the effects of the dynamic response of structural members subjected to various types of load shapes. To do so, a series of CFD analyses was performed using a full-scale FPSO topside model including detail parts of pipes and equipments, and the time history data of the blast loads at monitor points and panels were obtained by the analyses. In this paper, we focus on a structural dynamic response subjected to blast loads changing the magnitude of positive/negative phase pressure and time duration. From the results of linear/nonlinear transient analyses using single degree of freedom(SDOF) and multi-degree-of freedom(MDOF) systems, it was observed that dynamic responses of structures were significantly influenced by the magnitude of positive and negative phase pressures and negative time duration.

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach (시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.263-269
    • /
    • 2018
  • Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

A New Methodology for the Assessment of Liquefaction Potential Based on the Dynamic Characteristics of Soils (I) : A Proposal of Methodology (지반의 동적특성에 기초한 액상화 평가법(I) : 이론제안)

  • 최재순;홍우석;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.91-99
    • /
    • 2002
  • In this study, a new methodology for the assessment of liquefaction potential is proposed. Since there is no data on the liquefaction damage in Korea, the dynamic behavior of fully saturated soils is characterized through laboratory dynamic tests. There are two experimental parameters related to the soil liquefaction resistance characteristics : the one is the index of disturbance determined by $G/G_{max}$ curve and the other is a plastic shear strain trajectory evaluated from stress-strain curve. The proposed methodology takes advantage of the site response analysis based on real earthquake records to determine the driving effect of earthquake. In the evaluation of liquefaction resistance characteristics, it is verified experimentally that the magnitude of cyclic shear stress has no influence on the critical value of plastic shear strain trajectory at which the initial liquefaction occurs. Cyclic triaxial tests under the conditions of various cyclic stress ratios and torsional shear tests are carried out far the purpose of verification. Through this study, the critical value at the initial liquefaction is found unique regardless of the cyclic stress ratio. It is also f3und that liquefaction resistance curve drawn with disturbance and plastic shear strain trajectory can simulate the behavior of fully saturated soils under dynamic loads.

Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material (PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석)

  • Kim, Sung-Jo;Kim, Ji-Su;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.213-219
    • /
    • 2021
  • Polytetrafluoroethylene (PTFE) is a commercialized friction material in friction pendulum systems used for earthquake hazard mitigation in structures, and it has excellent chemical resistance and frictional performance. However, PTFE has a relatively low wear resistance for the friction pendulum systems in service. As an alternative to PTFE, a cost-effective frictional material, polyvinylidene fluoride (PVDF) strengthened by magnesium oxide (MgO), with enhanced wear resistance performance is proposed in this study. The frictional performance of the developed PVDF/MgO was evaluated through experiments and compared with that of PTFE. Accordingly, a friction pendulum system was designed using the measured friction coefficient. The performance of this friction pendulum system was evaluated via nonlinear time history analyses of bridges. Subsequently, the plausibility of using PVDF/MgO as an alternative to PTFE as a friction material for friction pendulum systems was discussed.

Gate Pier damage assessment by vessel collision (선박충돌에 따른 콘크리트 배수갑문 교각 구조해석)

  • Kim, Kwan-Ho;Cho, Jae-Yong;Cho, Young-Kweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.165-166
    • /
    • 2010
  • Collision scenario was 12 cases considering gate location, water level and lateral location of collision etc. And then, analysis result of trunnion by collision loads (reservoir side gate). Compressive fracture may not occur because the maximum compressive stress of concrete is below the allowable compressive strength. but, it is possible to appear some local crack because the maximum tensile stress exceed the tensile strength.

  • PDF

통합형 점소성 구성방정식을 적용한 유한요소해석에 관한 연구

  • Kim, Jong-Beom;Lee, Hyeong-Yeon;Yoo, Bong;Kwak, Dae-Young;Lim, Yong-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1014-1020
    • /
    • 1995
  • 고온구조물은 고온에서의 운전상태에 따라 복잡한 하중이력을 경험하게 됨으로써 상온에서 발생하는 손상 기구와는 달리 온도 의존성을 가질 뿐만 아니라, 상온에서 볼 수 없는 크립-피로의 상호작용에 의한 손상현상이 나타나게 된다. 따라서 고온 구조물의 건전성 평가를 위한 비탄성 해석을 신뢰성 있게 수행하기 위해서는 구조물의 비선형 거동을 비교적 정확히 예측할 수 있는 통합 구성방정식의 개발 및 적용과 온도에 따른 재료의 물성치 확보가 필수적이다. 본 연구에서는 통합 점소성 모델인 수정된 Chaboche 모델에 대해서 내연적 시간 적분법을 적용하여 ABAQUS의 UMAT으로 구현하였고, 개발된 프로그램을 이용하여 INCONEL 718을 사용한 단순 인장해석, 반복 소성 특성해석 및 크립 해석을 수행하여 프로그램의 신뢰성을 평가하였다. 또한 원공이 있는 평판에 대한 예제해석을 수행함으로써 개발된 프로그램이 고온구조물의 건전성 평가를 위한 비탄성 해석에 적절하게 적용될 수 있음을 확인하였다.

  • PDF

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.55-64
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration caused by prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve (SWCC) of granite and gneiss weathered soils is investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

A Comparison Study of Direct Impact Analysis of Vehicle to Concrete Pier and In-Direct Impact Analysis using Load-Time History Functions (차량과 콘크리트 교각의 직접충돌해석법과 충돌하중이력곡선을 이용한 간접충돌해석법 비교연구)

  • Kim, WooSeok;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.533-542
    • /
    • 2014
  • In design standards such as AASHTO LRFD and Korea Highway Bridge Design, the dynamic behaviors under the impact loading has not been considered and it recommends of using a static force for designing bridge column against vehicle collisions. Accordingly, in this study, models of vehicle collisions to concrete bridge column were developed with various boundary conditions in order to take into account dynamic behaviour of the column. Cargo trucks of 10tons, 16tons and 38tons were selected and a typical type of concrete bridge pier column along the Kyungbu highway in Korea was selected for this study. Results from this study indicate that the static load specified in the design standards are too small compared to results obtained in this study. It was also found that a consideration of the bridge superstructure allowed smaller damages of concrete bridge pier column under truck impact loadings. Furthermore, a comparison study of direct impact analysis of vehicle to bridge-column with in-direct impact analysis using load-time history functions was performed. The in-direct impact analysis shows that the use of load-time history graph improves the computational cost up to 92% and predict the behaviors of the bridge column under the impact loadings well. The obtained load-time history graph could be easily applied to several existing models.

Design of a Low-rise RC Building with Damping System (저층 철근콘크리트 건축물의 제진 구조 설계)

  • Lee, Eun-Jin;Hyoun, Chang-Kook;Choi, Ki-Sun;You, Young-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.454-457
    • /
    • 2011
  • 본 논문에서는 국내에서 아직 기준이 마련되지 않은 제진설계에 대한 접근을 소개하였다. ASCE 7-05 기준에 근거하여 국내 5층 규모의 철근콘크리트 신축 건물에 제진 설계를 수행하였다. 우리나라의 현행 기준을 만족하면서 효과적인 제진 시스템 설계를 위한 방법을 소개한다. ASCE 7-05 기준에서는 제진 구조물 해석 시 부재력이 공칭강도의 1.5배를 초과하지 않은 경우 경계비선형 해석을 허용하고 있다. 이 때의 제진 설계 프로세스는 기존의 중력하중 및 등가정적하중의 75%에 의한 단면을 가정하여 부재설계를 실시하고, 선형 시간이력 해석을 통해 제진장치 및 가새를 설계한다. 이후 우리나라 실정에 맞도록 보정된 인공 지진파를 입력하여 경계비선형 해석을 실시하고, 밑면 전단력 및 층간변위 등의 만족여부를 검토한다. 이 때 목표성능을 완전탄성설계 또는 유사탄성설계로 정하여 목표성능을 만족하는지도 검토하여야 한다. 본 논문에 적용한 신축 건물은 유사탄성 설계를 위해 경계비선형 해석을 실시하였고, 가장 효과적인 제진 설계를 위해 댐퍼의 종류, 설치방법, 개수, 변위 증폭비 등을 변수로 한 case study를 진행하였다. 해석 결과 목표성능을 만족하는 범위 내에서 가장 효과적인 제진 설계는 점성댐퍼, 이층 토글형태, 증폭비 2.0, 총 8개의 댐퍼를 설치하는 것으로 나타났다.

  • PDF

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF