• Title/Summary/Keyword: 시간영역 탐사

Search Result 213, Processing Time 0.023 seconds

Generalized Rapid Relaxation Inversion of Two-Dimensional Magnetotelluric Survey Data (GRRI를 이용한 2차원 MT 탐사자료의 역산)

  • Jeong, Yong-Hyun;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Inversion schemes of 2-D MT survey data generally take enormous computational time and computer memory. In addition, careful attention must be paid in handling MT data, especially in cases of TM mode, inversion results can be seriously distorted because of static effect caused by current channeling across inhomogeneous surface boundaries. There-fore inversion algorithm using the GRRI scheme for TM mode MT data was implemented. This scheme is based on a perturbation analysis with a locally 2-D analysis and local inversions were sequently performed over each divided section without additional forward modelings. The algorithm was applied to several synthetic data for the purpose of verification of its efficiency and applicability. With less computer resources than conventional schemes, it could handle static effect directly by including current channeling across inhomogeneous boundaries. Thus it is expected to be used for an useful tool such as a real-time inversion scheme in the field.

  • PDF

A Comparison of Performance between STMP/MST and Existing Spatio-Temporal Moving Pattern Mining Methods (STMP/MST와 기존의 시공간 이동 패턴 탐사 기법들과의 성능 비교)

  • Lee, Yon-Sik;Kim, Eun-A
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.49-63
    • /
    • 2009
  • The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.

  • PDF

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

A Case Study on the Data Processing to Enhance the Resolution of Chirp SBP Data (Chirp SBP 자료 해상도 향상을 위한 전산처리연구)

  • Kim, Young-Jun;Kim, Won-Sik;Shin, Sung-Ryul;Kim, Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2011
  • Chirp sub-bottom profilers (SBP) data are comparatively higher-resolution data than other seismic data and it's raw signal can be used as a final section after conducting basic filtering. However, Chirp SBP signal has possibility to include various noise in high-frequency band and to provide the distorted image for the complex geological structure in time domain. This study aims at the goal to establish the workflow of Chirp SBP data processing for enhanced image and to analyze the proper parameters for the domestic continental shelf. After pre-processing, we include the dynamic S/N filtering to eliminate the high-frequency component noise, the dip scan stack to enhance the continuity of reflection events and finally the post-stack depth migration to correct the distorted structure on the time domain sections. We demonstrated our workflow on the data acquired by domestically widely used equipments and then we could obtain the improved seismic sections of depth domain. This workflow seems to provide the proper seismic section to interpretation when applied to data processing of Chirp SBP that are largely used for domestic acquisition.

Deep-Learning Seismic Inversion using Laplace-domain wavefields (라플라스 영역 파동장을 이용한 딥러닝 탄성파 역산)

  • Jun Hyeon Jo;Wansoo Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.84-93
    • /
    • 2023
  • The supervised learning-based deep-learning seismic inversion techniques have demonstrated successful performance in synthetic data examples targeting small-scale areas. The supervised learning-based deep-learning seismic inversion uses time-domain wavefields as input and subsurface velocity models as output. Because the time-domain wavefields contain various types of wave information, the data size is considerably large. Therefore, research applying supervised learning-based deep-learning seismic inversion trained with a significant amount of field-scale data has not yet been conducted. In this study, we predict subsurface velocity models using Laplace-domain wavefields as input instead of time-domain wavefields to apply a supervised learning-based deep-learning seismic inversion technique to field-scale data. Using Laplace-domain wavefields instead of time-domain wavefields significantly reduces the size of the input data, thereby accelerating the neural network training, although the resolution of the results is reduced. Additionally, a large grid interval can be used to efficiently predict the velocity model of the field data size, and the results obtained can be used as the initial model for subsequent inversions. The neural network is trained using only synthetic data by generating a massive synthetic velocity model and Laplace-domain wavefields of the same size as the field-scale data. In addition, we adopt a towed-streamer acquisition geometry to simulate a marine seismic survey. Testing the trained network on numerical examples using the test data and a benchmark model yielded appropriate background velocity models.

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.

국소 비선형 근사를 이용한 전자탐사 3차원 모델링 및 역산

  • 조성준;송윤호;서정희;정승환
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.198-200
    • /
    • 2002
  • 경제적이며 정확한 3차원 전자탐사 모델링을 위해 위해 Habashy et al. (1993)에 의해 제안된 국소 비선형 근사(localized nonlinear approximation)를 이용하여 전자탐사 모델링 알고리듬을 개발하였다. 전자탐사 수치모델링시 많은 계산시간 및 기억용량을 필요로 하는 Green 텐서 적분을 정확하고 빠르게 계산하기 위해, 단일 미소체를 이용한 공간파수 영역에서의 Green 텐서 적분 알고리듬을 제안하였다. 더욱이 Green 텐서의 송수신 방향 및 상반성을 고려하여 각각의 미소체에 의한 전체 미소체에의 Green 텐서 적분을 한 개의 미소체에 의한 전체 미소체에의 Green 텐서 적분 값으로 구하게 하므로 매우 적은 기억용량 만으로 Green 텐서 적분 행렬을 구성할 수 있어, 역산법에 효과적으로 적용할 수 있다. 이 수치 모델링 알고리듬을 기본으로 하여 평활화 제한을 가한 최소자승 역산 알고리듬을 개발하였다. 이 역산 알고리듬을 지표 전자탐사 및 시추공-지표 전자탐사 등에 적용하여 PC에서도 빠르게 3차원 전자탐사 역산이 수행됨을 보였다.

  • PDF

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Time-Domain Electromagnetic Coupling in Induced Polarization Surveys on a Uniform Earth (균질대지에 대한 시간영역 유도분극법에 전자기결합)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.193-197
    • /
    • 1986
  • A simple and fast solution is derived to evaluate the effects of time-domain electromagnetic coupling in induced polarization surveys on a uniform earth. The simplified solution gives an explicit statement of the dependence of time-domain electromagnetic coupling on the model parameters, and yields sufficiently accurate results for most situations encountered in practice. The co-linear dipole-dipole and Wenner arrays are used as examples in this paper, but th numerical solution can be applied to any electrode configuration.

  • PDF

Moving Pattern Mining Algorithm of Moving Object for Support of Optimal Path Service (최적 경로 서비스 지원을 위한 이동 객체의 이동 패턴 탐사 알고리즘)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • 최근 위치 측위 기술의 발달 및 GPS 기술의 상용화로 인해 무선 통신 기기의 보급이 증가하면서 다양한 위치 기반 서비스 개발을 위한 노력이 활발히 진행되고 있다. 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이동 데이터로부터 의미있는 지식인 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들 중 일부는 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나 또는 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 전체 이동 패턴들 중 추출하고자 하는 패턴에 반드시 포함되어야 하는 공간 정보에 대한 제약이 없어 특정 지점들 사이의 최적 이동 경로 탐색 문제나 단위기간 동안 이동 객체가 순회해야 지점들에 대한 스케줄링 경로 예측 문제 등에 적용하기 어렵다. 따라서 본 논문에서는 이동 객체의 위치 이력 데이터들에 대한 시공간 속성들을 고려하여 다양한 이동 패턴들 중 객체의 최적 이동 경로에 해당하는 패턴을 탐색하기 위한 새로운 시간 패턴 마이닝 알고리즘을 제안한다. 제안된 알고리즘은 특정한 지점들 사이를 이동한 객체의 위치 데이터들 중 객체가 가장 빈번하게 이동한 경로를 탐색하여 최적 경로를 결정하는 알고리즘으로, 공간 추상 계층의 각 계층별 영역 내 포함여부를 고려한 위치 일반화를 수행하여 보다 효과적으로 이동 패턴을 탐색할 수 있다.

  • PDF