Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.3.109

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey  

Kim, Dae-sik (Department of Mineral Resources and Energy Engineering, Jeonbuk National University)
Shin, Jungkyun (Pohang Branch, Korea Institute of Geoscience and Mineral Resources)
Ha, Jiho (Pohang Branch, Korea Institute of Geoscience and Mineral Resources)
Kang, Nyeon Keon (Marine Geology and Energy Division, Korea Institute of Geoscience and Mineral Resources)
Oh, Ju-Won (Department of Mineral Resources and Energy Engineering, Jeonbuk National University)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.3, 2022 , pp. 109-119 More about this Journal
Abstract
The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.
Keywords
reverse time migration; ultra-high-resolution seismic survey; excitation amplitude;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data, 2nd edition, Society of Exploration Geophysicists, Tulsa, Oklahoma, USA. https://doi.org/10.1190/1.9781560801580.fm   DOI
2 Shin, J., Ha, J., Kang, N., Kim, H., and Kim, C., 2021, Development of a portable 3D seismic survey system for nearshore surveys and the first case study offshore Pohang, South Korea, Mar. Geophys. Res., 42(34), 1-16. https://doi.org/10.1007/s11001-021-09453-x   DOI
3 Liner, C. L., 2016, Elements of 3D Seismology, Third Edition. Society of Exploration Geophysicists. https://library.seg.org/doi/pdf/10.1190/1.9781560803386.ref
4 Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics, 39(6), 834-842. https://doi.org/10.1190/1.1440470   DOI
5 Kim, W., Shin, J., Kim, H., Yi, B. Y., Park, C., Kim, C., Seo, G., Cho, D., Jung, Y., Lee, H. Y., Lee, H. Y., and Kang, D. H., 2018 Imaging the completely buried anomaly using a small-ship three-dimensional seismic survey system, J. Coast. Res., 85(sp1), 1196-1200. https://doi.org/10.2112/SI85-240.1   DOI
6 Lee, D., Kim, B., Kim, J., and Jang, S., 2022, Shallow Gas Exploration in the Pohang Basin Transition Zone, Geophys. Explor., 25(1), 1-13. https://doi.org/10.7582/GGE.2022.25.1.1   DOI
7 Lee, H., Park, K., Koo, N., Yoo, D., Kang, D., Kim, Y., Hwang, K., and Kim, J., 2004, High-resolution shallow marine seismic surveys off Busan and Pohang, Korea, using a small-scale multichannel system, Journal of Applied Geophysics, 56(1), 1-15. https://doi.org/10.1016/j.jappgeo.2004.03.003   DOI
8 Brookshire, B. N., Lippus, C., Parish, A., Mattox, B., and Burks, A., 2016, Dense arrays of short streamers for ultrahighresolution 3D seismic imaging, Lead. Edge, 35(7), 594-599. https://doi.org/10.1190/tle35070594.1   DOI
9 Dragoset, B., 2005, A historical reflection on reflections, Leading Edge, 24(s1), 46-70. https://doi.org/10.1190/1.2112392   DOI
10 French, W. S., 1975, Computer migration of oblique seismic reflection profiles, Geophysics, 40(6), 961-980. https://doi.org/10.1190/1.1440591   DOI
11 Liner, C. L., 2000, On the history and culture of geophysics and science in general, The Leading Edge, 19(5), 502-504. https://doi.org/10.1190/1.1438642   DOI
12 Planke, S., Eriksen, F. N., Berndt, C., Mienert, J., and Masson, D., 2009, P-Cable high-resolution seismic, Oceanography, 22(1), 85. https://oceanrep.geomar.de/id/eprint/1163/1/896_Planke_2009_PcableHighresolution3dSeismic_Artzeit_pubid12739.pdf   DOI
13 Schneider, W. A. 1971. Developments in seismic data processing and analysis (1968-1970). Geophysics, 36(6), 1043-1073. https://doi.org/10.1190/1.1440232   DOI
14 Sun, X., and Li, Z., 2017. Application of least-squares reverse time migration to CO2 storage monitoring. 2017 SEG annual meeting, Qingdao, China, 91-94. https://doi.org/10.1190/IGC2017-024   DOI
15 Ravasi, M., Vasconcelos, I., Curtis, A., and Kritski, A., 2015. Vector-acoustic reverse time migration of Volve ocean-bottom cable data set without up/down decomposed wavefields. Geophysics, 80(4), S137-S150. https://doi.org/10.1190/geo2014-0554.1   DOI
16 Nguyen, B. D., and McMechan, G. A., 2013, Excitation amplitude imaging condition for prestack reverse-time migration, Geophysics, 78(1), 37-46. https://doi.org/10.1190/geo2012-0079.1   DOI
17 Monrigal, O., Jong, I. D., and Duarte, H., 2017, An ultra-high-resolution 3D marine seismic system for detailed site investigation, Near Surface Geophysics, 15(4), 335-345. https://doi.org/10.3997/1873-0604.2017025   DOI
18 Oh, J.-W., Kalita, M., and Alkhalifah, T., 2018. 3D elastic full-waveform inversion using P-wave excitation amplitude: Application to ocean bottom cable field data, Geophysics, 83(2), R129-R140. https://doi.org/10.1190/geo2017-0236.1   DOI
19 Roy, A., and Chazalnoel, N., 2011. RTM technology for improved salt imaging in the Santos Basin, Brazil. 2011 SEG annual meeting, San Antonio, Texas, 1812-1816. https://doi.org/10.1190/1.3627869   DOI
20 Sirgue, L., Etgen, J., and Albertin, U., 2008, 3D frequency domain wave-form inversion using time domain finite difference methods, 70th Ann. Internat. Conference and Exhibition Incorporating SPEEUROPEC, EAGE, Expanded Abstracts, cp-40. https://doi.org/10.3997/2214-4609.20147683   DOI
21 Symes, W. W., 2007, Reverse time migration with optimal checkpointing, Geophysics, 72(5), 213-221. https://doi.org/10.1190/1.2742686   DOI
22 Yang, D., Malcolm, A., Fehler, M., and Huang, L., 2014. Timelapse walkaway vertical seismic profile monitoring for CO2 injection at the SACROC enhanced oil recovery field: A case study, Geophysics, 79(2), 51-61. https://doi.org/10.1190/geo2013-0274.1   DOI
23 Dussaud, E., Symes, W. W., Williamson, P., Lemaistre, L., Singer, P., Denel, B., and Cherrett, A., 2008, Computational strategies for reverse-time migration. In SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2267-2271. https://doi.org/10.1190/1.3059336   DOI
24 Chen, Y., and Huang, Y., 2010. Use Q-RTM to image beneath Gas Hydrates in Alaminos Canyon, Gulf of Mexico. 80th SEG annual meeting, 3165-3170. https://doi.org/10.1190/1.3513504   DOI
25 Zhou, H. W., Hu, H., Zou, Z., Wo, Y., and Youn, O., 2018, Reverse time migration: A prospect of seismic imaging methodology, Earth-Science Rev., 179, 207-227. https://doi.org/10.1016/j.earscirev.2018.02.008   DOI
26 Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse time migration, Geophysics, 48(11), 1514-1524. https://doi.org/10.1190/1.1441434   DOI
27 Brookshire, B. N., Landers, F. P., and Stein, J. A., 2015, Applicability of ultra-high-resolution 3D seismic data for geohazard identification at mid-slope depths in the Gulf of Mexico: Initial results, Underw. Technol., 32(4), 271-278. https://doi.org/10.3723/ut.32.271   DOI
28 Claerbout, J. F., 1971, Toward a unified theory of reflector mapping, Geophysics, 36(3), 467-481. https://doi.org/10.1190/1.1440185   DOI
29 Gray, S. H., and May, W. P., 1994, Kirchhoff migration using eikonal equation traveltimes, Geophysics, 59(5). https://doi.org/10.1190/1.1443639   DOI
30 KIGAM, 2017, Development of Engineering-scale 3D system for Marine Seismic Exploration. https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201600000638
31 KIGAM, 2019, Development of real-time monitoring mobile system for Shallow 3D seismic survey. https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202000005456
32 Nguyen, B. D., and McMechan, G. A., 2015, Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration, Geophysics, 80(1), 1-18. https://doi.org/10.1190/geo2014-0014.1   DOI