• Title/Summary/Keyword: 승압형 컨버터

Search Result 204, Processing Time 0.023 seconds

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter (2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

Digital Current Control Scheme for Boost Single-Phase PFC Converter Based on Virtual d-q Transformation (가상 d-q 변환을 이용한 승압형 단상 PFC 컨버터의 디지털 전류 제어 방법)

  • Lee, Kwang-Woon;Kim, Hack-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2020
  • A digital current control scheme using virtual d-q transformation for a boost single-phase power factor correction (PFC) converter is proposed. The use of virtual d-q transformation in single-phase power converters is known to improve current control performance. However, the conventional virtual d-q transformation-based digital current control scheme cannot be directly applied to the boost single-phase PFC converter because the current and average voltage waveforms of the inductor used in the converter are not sinusoidal. To cope with this problem, this study proposes a virtual sinusoidal signal generation method that converts the current and average voltage waveform of the inductor into a sinusoidal waveform synchronized with the grid. Simulation and experimental results are provided to show that the virtual d-q transformation-based digital current control is successfully applied to the boost single-phase PFC converter with the aid of the proposed virtual sinusoidal signal generation method.

Soft Switched Three-Phase Single Switch Boost-Type Converter (소프트 스위칭 3상 단일 스위치 승압형 컨버터)

  • Mun, S.P.;Jun, C.W.;Pack, S.U.;Kim, D.U.;Kim, Y.M.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1166-1168
    • /
    • 2003
  • In most power electronic applications, the AC power input provided by the electronic utility needs to first converted to a DC voltage. Such conversion is accomplished by a diode rectifier due to its circuit simplicity and low cost. However, since diode rectifiers have some intrinsic problems such as low power factor and high harmonic distortion, a wide use of such rectifiers may cause noises, malfunction and heat damage in both electrical power systems and electrical machinery systems. This paper proposes soft switched three-phase single switch boost-type converter. The proposed circuit can perform Zero Voltage Switched(ZVS) without using any current and voltage sensors. For this circuit, both simulation and experiments have been performed. The results not only confirmed the ZVS but also indicated that, compared to the conventional hard switched converter, the prosed circuit can improve the efficiency as much as 1.7 to 4.7[%] while keeping the same high power factor and small harmonic distortion in their AC input.

  • PDF

A New Multi Level High Gain Boost DC-DC Converter with Wide Input Voltage Range and Reduced Stress Voltage Capability (넓은 입력 전압 범위와 감소된 스트레스 전압 기능성을 갖는 새로운 승압형 멀티레벨 DC-DC 컨버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.2
    • /
    • pp.133-141
    • /
    • 2020
  • The use of high-gain-voltage step-up converters for distributed power generation systems is being popularized because of the need for new energy generation and power conversion technologies. In this study, a new constructed high-gain-boost DC-DC converter was proposed to coordinate low voltage output DC sources, such as PV or fuel cell systems, with high DC bus (380 V) lines. Compared with traditional boost DC-DC converters, the proposed converter can create higher gain and has wider input voltage range and lower voltage stress for power semiconductors and passive elements. Moreover, the proposed topology produces multilevel DC voltage output, which is the main advantage of the proposed topology. Steady-state analysis in continuous conduction mode of the proposed converter is discussed in detail. The practicability of the proposed DC-DC converter is presented by experimental results with a 300 W prototype converter.

A Soft Switching Boost Converter with High Voltage Gain Using a Single Switch (높은 승압비를 가진 공진형 소프트 스위칭 부스트 컨버터)

  • Park, Kun-Wook;Jung, Doo-Yong;Lee, Su-Won;Jung, Yong-Chae;Won, Chung-Yuen;Seo, Kwang-Duck
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.173-175
    • /
    • 2009
  • A dc/dc converter for low voltage of battery application and fuel cell system is required to step up and regulate the low and widely variable voltage. In this paper, we have proposed a soft switching boost converter with high voltage gain using a single switch. Through the theoretical analysis and experimental result, operation modes and characteristics of the proposed topology is verified.

  • PDF

High-efficiency PV Inverter using SiC (SiC 소자를 이용한 태양광 인버터의 효율 향상)

  • Lee, Jinmok;Oh, Seunghun;Koh, Kwang-soo;Kwon, Hyuuk-il;Park, Kyung-hun;Han, Kyung-sik
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.302-303
    • /
    • 2011
  • 일반적인 승압 컨버터와 H-bridge 인버터로 구성되는 비절연 계통연계형 태양광 인버터 시스템의 효율을 높이기 위해 H-bridge의 스위칭에 적합한 Unipolar 스위칭 방식을 선정하고, 또 SiC 다이오드를 사용함으로써 전체 효율을 향상시켰으며 이를 시뮬레이션과 실험으로 보여준다.

  • PDF

Isolated Step-up DC/DC Converter applied Soft-switching Method (소프트스위칭 방식을 적용한 절연형 승압용 DC/DC 컨버터)

  • Kim, Young-Ju;Hwang, Jung-Goo;Kim, Sun-Pil;Park, Sung-Jun;Song, Sung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.87-94
    • /
    • 2015
  • Recently, renewable energy sources are under the spotlight. due to the depletion of fossil fuels and environmental problem for the carbon dioxide. Among them, research on the Photovoltaic System using solar energy systems has been actively conducted. In this paper, we propose boosting the insulated DC/DC converter topologies Applied to soft-switching methods used in photovoltaic PCS. The proposed topology is of a type that combines a series of full-bridge converter and a boost converter, a full bridge converter and applying the insulation and soft switching system, the output voltage boost stage is carried out for the boost control. The proposed circuit validity was verified through the PSIM simulation and 5kW PV PCS Prototype and experiments.

The Analysis of PCS Loss for Fuel-Cell Composed of Boost Converter (Boost Converter로 구성되는 연료전지용 PCS의 손실 분석의 연구)

  • Kim, Young-Sik;Han, Dong-Hwa;Jeong, Byung-Hwan;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.133-135
    • /
    • 2008
  • 본 논문은 계통연계형 연료전지 PCS(Power Conditioning System)에서 최적의 승압효율을 갖는 Boost Converter의 설계를 위해 Boost Converter내의 각 소자의 선정에 따른 손실 및 분석을 통하여 최적의 소자선정 방법의 이해를 목적으로 한다. Boost Converter의 설계를 위한 소자선정을 위해 Or-CAD 16.0의 PSPICE Simulator을 사용하여 그 결과를 확인하였다.

  • PDF

A Comparison of Operation Characteristics for $3\Phi$Boost/Buck Converter to Inverter Arc Welding Machine (인버터 아크용접기를 위한 3상 승압/강압형 컨버터의 운전특성비교)

  • 최해룡;구영모;채영민;최규하;목형수;김규식;원충연
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.260-264
    • /
    • 1998
  • Three phase Boost/Buck converter which have economical merits and simple control scheme, are analyzed and evaluated through comparative methods and digital simulation for equivalent load. Those play a part of voltage boost/buck as well as power factor correction with single switch. Controller operating in constant and variable frequency is used for rapid output response and stable system condition respectively. Moreover low THD property of single switched converters is available for inverter arc welding machine known as high power and low power factor. So, in this paper a comparison of the characteristics in boost and buck converter is described and then simulation results conforms the merits from point of view of power factor and voltage regulator.

  • PDF