• 제목/요약/키워드: 습식화학합성

검색결과 39건 처리시간 0.029초

습식화학적 분말합성법에 의한 Ba-, Pb-계 전자세라믹스의 제조 (Fabrication of Ba-, Pb-electronic ceramics by powder prepartion of wet chemical method)

  • 이병우;오근호
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 제11차 KACG 학술발표회 Crystalline Particle Symposium (CPS)
    • /
    • pp.259-279
    • /
    • 1996
  • 최근 정보·전자산업의 발전으로 고 신뢰성 전자재료에 대한 수요가 증대되고 있으며 이러한 첨단산업의 기반의 될 신소재 중 전자세라믹스가 차지하는 비중이 그 대부분을 차지하고 있으며 이에 대한 수요와 기대가 점점 커지고 있다. 이러한 전자세라믹스는 유전재료, 자성재료, 압전재료, 도전성 재료 등으로 나뉘게 된다. 어떠한 분류에 들어가든 그 조성은 금속의 산화물 형태가 일반적이며 미세한 분말의 성형체를 소결(sintering) 함으로써 최종제품으로 완성된다. 이러한 전잣라믹스가 최근 요구되는 고 신뢰성, 고 밀도화를 달성하기 위해선 원료 분말 제조단계부터 제어가 필요하다. 원료분말의 균일·균질성과 그 입도는 소결특성 뿐만아니라 전기적 특성에도 큰 영향을 미치기 때문이다. 세라믹스의 분말제조 방법 중 일반적으로 사용되는 방법으로는 고상 산화물을 혼합하여 하소(calcination)한 후 분쇄하는 '고상합성법'과 금속의 염 또는 alkoxide 용액을 이용하여 화학적으로 제조하는 '습식 화학적 합성법'이 있다. 고상합성법은 합성온도가 높고 기계적 분쇄와 혼합에 의존하므로 균일·균질성이 떨어지고 분말크기를 1㎛ 이하로 만들기 힘들다. 반면에 습식화학적 합성법은 기계적인 분쇄와 혼합에선 얻을 수 없는 원자 혹은 분자단위의 균일한 혼합과 submicron 이하의 미세한 분말을 얻을 수 있다. 따라서 이러한 습식 화학적 합성으로 얻은 분말을 사용하면 미세한 입자의 특성으로 인해 소결온도를 낮출 수 있으며 균일한 미세구조와 균질한 조성을 갖게되어 기계적·전기적 물성증진도 가져올 수 있게 된다. 습식 화학적 분말합성법은 전술하였듯이 alkoxide의 가수분해를 이용하는 sol-gel 법과 금속의 염(salt) 용액을 이용하여, 화학적으로 화합물 침전을 얻거나 또는 공침전물(coprecipitate) 형태의 분말을 얻는, 침전법으로 나뉠 수 있다. 침전법의 근본원리는 pH 및 pCO3 등에 따른 이온종의 용해도 차이를 이용하는 것으로써 각 이온종에 따른 solubility product(ksp)를 이용하여 설명된다. 본 연구에서는 침전법을 사용한 Ba-, Pb-계 전자세라믹스의 분말합성에 대한 이론적 고찰과 공정개발 및 실험을 통한 물성증진 효과에 대해 알아보았다. 본 실험상의 전자세라믹스 조성은 강유전체, 세라믹반도체, 압효과에 대해 알아보았다. 본 실험상의 전자세라믹스 조성은 강유전체, 세라믹 반도체, 압전재료로 널리 사용되는 BaTiO3, PZT(PbZrO3-PbTiO3)와 수직 자기기록매체로 큰 가능성이 있으며 hard ferrite로 널리쓰이는 Ba-feerite(BaFe12O19)로써 수산화물 형태의 침전에 대한 기구(mechanism)와 물성에 대해 살펴보았다. 이러한 침전법에 의한 분말합성 과정에는 소결체의 물성에 영향을 미치는 pH 조절제나 원료에서 혼입될 수 있는 Na+, K+, Cl-, SO4- 등의 제거(washing 혹은 filtering)가 필수적이다. 그러나 침전법에서 얻게 되는 분말은 매우 미세하여 colloid를 형성하게 되며, 이러한 colloid 상태의 미세한 침전입자가 filtering media에 끼이게 되어 견고하면서도 상당한 부피를 가지는 filter cake을 형성하기 때문에 filtering에 많은 시간과 다량의 filtering agent (본 실험의 경우엔 증류수)가 필요하게 된다. 따라서 이러한 문제점을 해결하기 위하여 colloid 상태의 침전물을 얼렸다 녹이는 freezing process를 개발, 적용하여 그 원리 및 효과, 그로인한 분말형태를 관찰하여 보았다.

  • PDF

플라즈마 표면 처리를 이용한 ZnO 습식성장 패터닝 기술 연구

  • 이정환;박재성;박성은;이동익;황도연;김성진;신한재;서창택
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.330-332
    • /
    • 2013
  • 소 분위기에서 플라즈마 표면 처리의 경우 기판 표면에 존재하는 수소와 탄소 유기물들이 산소와 반응하여 $H_2O$$CO_2$ 등으로 제거되며 표면에 오존 결합을 유도하여 표면 에너지를 증가시키는 것으로 알려져 있다. ZnO 나노구조물을 성장시키는 방법으로는 MOCVD (Metal-Organic Chemical Vapor Deposited), PLD (Pulsed Laser Deposition), VLS (Vapor-Liquid-Solid), Sputtering, 습식화학합성법(Wet Chemical Method) 방법 등이 있다. 그중에서도 습식화학합성법은 쉽게 구성요소를 제어할 수 있고, 저비용 공정과 낮은 온도에서 성장 가능하며 플렉서블 소자에도 적용이 가능하다. 그러므로 본 연구에서는 플라즈마 표면처리에 따라 표면에너지를 변화하여 습식화학합성법으로 성장시킨 ZnO nanorods의 밀도를 제어하고 photolithography 공정 없이 패터닝 가능성을 유 무를 판단하는 연구를 진행하였다. 기판은 Si wafer (100)를 사용하였으며 세척 후 표면에너지 증가를 위한 플라즈마 표면처리를 실시하였다. 분위기 가스는 Ar/$O_2$를 사용하였으며 입력전압 400 W에서 0, 5, 10, 15, 60초 동안 각각 실시하였다. ZnO nanorods의 seed layer를 도포하기 위하여 Zinc acetate dehydrate [Zn $(CH_3COO)_2{\cdot}2H_2O$, 0.03 M]를 ethanol 50 ml에 용해시킨 후 스핀코팅기를 이용하여 850 RPM, 15초로 5회 실시하였으며 $80^{\circ}C$에서 5분간 건조하였다. ZnO rods의 성장은 Zinc nitrate hexahydrate [$Zn(NO_3)_2{\cdot}6H_2O$, 0.025M], HMT [$C6H_{12}N_4$, 0.025M]를 deionized water 250 ml에 용해시켜 hotplate에 올리고 $300^{\circ}C$에서 녹인 후 $200^{\circ}C$에서 3시간 성장시켰다. ZnO nanorods의 성장 공정은(Fig. 1)과 같다. 먼저 플라즈마 처리한 시편의 표면에너지 측정을 위해 접촉각 측정 장치[KRUSS, DSA100]를 이용하였다. 그 결과 0, 5, 10, 15, 60 초로 플라즈마 표면 처리했던 시편이 각각 Fig. l, 2와 같이 $79^{\circ}$, $43^{\circ}$, $11^{\circ}$, $6^{\circ}$, $7.8^{\circ}$로 측정되었으며 이것을 각각 습식화학합성법으로 ZnO nanorods를 성장 시켰을 때 Fig. 3과 같이 밀도 차이를 확인할 수 있었다. 이러한 결과를 바탕으로 기판의 표면에너지를 제어하여 Fig. 4와 같이 나타나며 photolithography 공정없이 ZnO nanorods를 패터닝을 할 수 있었다. 본 연구에서는 플라즈마 표면 처리를 통하여 표면에너지의 변화를 제어함으로써 ZnO nanorods 성장의 밀도 차이를 나타냈었다. 이러한 저비용, 저온 공정으로 $O_2$, CO, $H_2$, $H_2O$와 같은 다양한 화학종에 반응하는 ZnO를 이용한 플렉시블 화학센서에 응용 및 사용될 수 있고, 플렉시블 디스플레이 및 3D 디스플레이 소자에 활용 가능하다.

  • PDF

습식합성법을 이용한 Ni-Zn Ferrite의 제조 및 전자기적 특성연구 (Preparation and Electromagnetic Properties of Ni-Zn Ferrite by Wet Method)

  • 정구은;고재귀
    • 한국자기학회지
    • /
    • 제14권1호
    • /
    • pp.18-24
    • /
    • 2004
  • Fe(N $O_3$)$_3$$.$9$H_2O$, Ni(N $O_3$)$_2$.6$H_2O$, Zn(N $O_3$)$_2$$.$6$H_2O$와 같은 질산금속염들을 습식법의 일종인 습식 직접 합성법을 이용하여 Ni-Zn ferrite 분말로 합성하였다. 분말의 화학조성은(N $i_{0.284}$F $e_{0.053}$Z $n_{0.663}$)F $e_2$ $O_4$로 하였으며, 고투자율 재료의 영역에 목표를 두었다. 습식 직접 합성법으로 시편을 제조하기 위하여 측량된 질산금속염들을 반응 용기 내에서 NaOH로 침전시키면서 9$0^{\circ}C$의 합성온도로 8시간 동안 교반.합성하였다. 가소 온도는 $700^{\circ}C$로 하여 2시간 유지시켰고, 소결온도는 11$50^{\circ}C$-12$50^{\circ}C$의 범위에서 각각 2시간 유지시켰다. 또 금속산화물을 출발물질로 하여 동일한 조성을 가지는 분말을 습식볼밀링하여 제조하였으며, 두 가지의 공정으로 합성된 분말의 특성과 소결체의 전자기적 특성을 비교.연구하였다. 동일 조건일 경우, 습식 직접 합성법으로 제조하면 입도분포가 좁고, 고순도이며, 미분말인 페라이트 분말을 얻을 수 있었으며 소결체의 특성 또한 비교적 높은 투자율과 자화 값을 나타내었다.

감마형 삼수소 알루미늄 습식합성반응의 공정변수 연구 (Process variables of gamma-type aluminum trihydride in wet chemical synthesis)

  • 양요한;김우람;권윤자;박미정;김준형;조영민
    • 한국응용과학기술학회지
    • /
    • 제35권1호
    • /
    • pp.214-222
    • /
    • 2018
  • Alane(aluminum trihydride, $AlH_3$)으로 명명되는 고에너지 물질인 삼수소알루미늄은 수소저장물질로서 뿐만 아니라 우주항공분야의 고체 추진제나 방위산업의 화약제조용으로도 사용될 수 있다. 본 연구는 습식공정을 통하여 합성하고, 에테르를 세밀하게 분리하는 결정화 공정을 통하여 최종 수소화물을 추출하였다. 결정화 공정에서 삼수소알루미늄-에테레이트($AlH_3{\cdot}(C_2H_5)_2O$)가 alane으로 상변이하면서 입자가 성장하고, $85^{\circ}C$에서 2 시간의 결정화 시간이 이루어졌을 때 가장 안정된 결정상이 나타나는 모습을 확인하였다. 최종적으로 추출된 고체상 삼수소알루미늄은 막대모양의 ${\gamma}$-형태가 가장 많은 양을 차지하는 것으로 나타났으며, 크기는 $50-100{\mu}m$ 수준이었다.

산화철의 기술개발동향 (An Update Technology Trend in Iron Oxide)

  • 손진군
    • 자원리싸이클링
    • /
    • 제12권6호
    • /
    • pp.3-7
    • /
    • 2003
  • 산화철의 제조에는 기존의 습식화학제조법과 건식화학제조법이 있는데, 모두 환경에 영향을 미치는 화학물질을 대량으로 사용하여 산화철을 제조하는 기술이다. 본 기술보고에서는 환경친화적 제조법으로 스크랩을 원료로 박테리아를 이용하여 산화철을 제조하는 생화학적 기술과 자전고온합성법을 이용하여 산화철을 제조하는 신개념의 산화철제조 기술을 소개하였다.

전고체전지용 황화물 고체전해질 습식 합성기술 동향 (A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries)

  • 하윤철
    • 전기화학회지
    • /
    • 제25권3호
    • /
    • pp.95-104
    • /
    • 2022
  • 상용 리튬이온전지의 에너지밀도 한계와 안전성 이슈로 불연성 전고체전지 개발이 현안이 되고 있다. 특히, 전기자동차를 위한 차세대 이차전지에 황화물 고체전해질의 적용 가능성이 높아지면서, 고체전해질의 대량생산과 저가격화를 위한 노력 또한 활발해 진행되고 있다. 황화물 고체전해질에 관한 현재까지의 대부분의 연구에서는 조성 및 불순물 제어가 용이하고 균질화와 열처리 시간을 줄일 수 있는 고에너지 기계적 밀링법을 이용하여 열역학적으로 안정한 상 및 준-안정한 상에 대한 탐색을 수행해 왔다. 이를 통해 액체 전해질의 리튬이온전도도를 능가하는 다양한 황화물 고체전해질이 보고되어, 고에너지밀도 고안전성 전고체전지 구현에 대한 기대가 커지고 있다. 그러나, 고에너지 기계적 밀링법은 대량생산에 따른 동일 물성 획득이 쉽지 않고, 입도나 형상 제어가 용이하지 않으며, 분쇄-분급 과정에서 물성의 열화가 발생하는 단점이 알려져 있다. 이에 비해 대량생산과 저가격화에 유리한 습식 합성기술은 아직 다양한 고체전해질 제조에 응용되지는 못하고 있다. 습식 합성기술에서는 입자형, 용액형, 또는 혼합형으로 전구체를 합성하고 용매를 제거한 후 열처리하는 공정을 통해 제조하고 있으나, 전구체의 형성 메커니즘에 대한 명확한 규명도 아직 이루어지지 않고 있다. 본 총설에서는 용매 내 원료들의 반응 메커니즘을 중심으로 한 황화물 고체전해질의 습식 합성기술 동향을 살펴보고자 한다.

분류층 습식 석탄가스화 기술 (Entrained-Flow Coal Water Slurry Gasification)

  • 라호원;이시훈;윤상준;최영찬;김재호;이재구
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.129-139
    • /
    • 2010
  • 석탄으로부터 수소, 일산화탄소 등의 가스 연료를 생산하기 위하여 개발된 석탄 가스화 공정은 이산화탄소 저장, 환경 유해 물질 저감 등의 우수성으로 인하여 최근 세계 각국에서 앞다투어 개발에 나서고 있다. $75{\mu}m$ 이하의 미분탄을 이용하는 분류층 가스화 공정은 용량의 대형화가 쉽고, 에너지 전환 효율이 우수하여 석탄가스화복합발전(IGCC) 등에 널리 이용되고 있다. 특히 석탄슬러리를 원료로 사용하는 습식 분류층 가스화 공정은 기술적으로 성숙되어 가장 많이 보급되고 있다. 본 논문에서는 습식 분류층 가스화 공정을 이루는 석탄전처리, 버너, 가스화기, 슬래그용융, 가스화 운전 특성과 설계 및 해석을 위한 수치모사 등의 요소기술 개발 현황을 고찰하였다. 습식 석탄가스화는 IGCC 플랜트에서 뿐만 아니라 합성석유, SNG, 화학원료 제조용으로 활용될 수 있으며 융합 공정, 연료 다변화 등에 대응하기 위하여 요소기술별 추가적인 기술개발이 이루어져야 할 것으로 판단된다.

습식 및 건식 석탄가스화공정에 대한 비교 연구 (The Comparative Study on the Gasification Process between Coal Water Slurry and Dry Pulverized Coal)

  • 심현민;왕홍약;정수용;김형택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.788-791
    • /
    • 2007
  • 기존의 미분탄 화력발전을 대체할 수 있는 차기 주자인 가스화복합발전(Integrated Gasification Combined Cycle) 기술은 단순히 열과 전기를 얻는데 그치지 않고 $CO_2$ 저감뿐만 아니라 다양한 형태의 2차 에너지원과 화학원료를 생산할 수 있는 기술이다. 상용화 운전 중인 기존의 IGCC 플랜트는 석탄 공급에 있어 건조된 미분탄(dry pulverized coal) 형태로 공급하는 건식 형태와 석탄슬러리(Coal water slurry)의 액상으로 공급하는 습식 형태로 대별되고 있다. 본 연구에서는 ASPEN plus를 이용하여 상용화 IGCC 플랜트에 대한 기본 모델을 구축하였으며, 산지별로 대상 탄종을 illinois #6(미국), Shenhua(중국), Drayton(호주)로 선정하여 가스화공정에 대한 성능을 해석하였다. 동일한 발전 출력을 얻고자 하였을 때, 석탄의 공급방식에 따라 필요한 석탄과 유틸리티 공급량과 가스화기 전${\cdot}$후단에서의 운전특성과 생성되는 합성가스(syngas) 조성, 냉가스(cold gas) 효율 및 탄소 전환율을 통해 각 case에 대한 플랜트 특성을 비교하였다.

  • PDF

습식 분류층 석탄가스화 운전 특성 (Characteristics of Wet Feeding Gasification in an Entrained-flow Gasifier)

  • 라호원;최영찬;윤상준;홍재창;김용구;라호원;김재호;이재구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2953-2961
    • /
    • 2008
  • 습식 석탄가스화란 석탄을 물과 혼합한 슬러리 형태(CWM, Coal Water Mixture)로 사용하는 것을 말하며, 분류층 가스화기에 빠르게 적용되었던 이유는 석유류 가스화와 공급방식이 유사하다는 점에서 출발하였다고 볼 수 있다. 1950년도에 사용되어 왔던 석유류 가스화 이용은 1970년 이후로는 유가 상승의 영향으로 석탄가스화로 바뀌게 되었다. 합성가스의 활용공정인 화학물질 제조 또는 복합발전의 운전 압력이 대부분 높기 때문에 가스화 압력을 높게 유지하기 위하여 슬러리 공급 방식이 많이 이용되었다. 슬러리 형태의 석탄 연료는 석유류가스와 시스템을 유사하게 활용할 수 있는 장점이 있으며, 특별히 고압을 필요로 하는 경우에도 비교적 간단한 시스템을 이용하여 공급 가능하다. 본 고에서는 현재까지 한국에너지기술연구원에서 수행된 습식 석탄가스화 기술개발 내용에 대하여 기술하고자 하였다.

  • PDF