• Title/Summary/Keyword: 슬라이딩 모드 관측기

Search Result 132, Processing Time 0.03 seconds

Sliding Mode Control of the ABS with a Disturbance Observer (관측기를 가진 ABS 슬라이딩 모드 제어법)

  • Hwang Jin-Kwon;Oh Kyeung-Heub;Song Chul-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • This paper addresses sliding mode control (SMC) of the anti-lock braking system (ABS) with a compensator of model uncertainties such as vehicle parameter variation, unmodeled dynamics, and external disturbances. A sliding mode controller (SMC) is designed with a nominal vehicle model to achieve a desired wheel slip ratio. A disturbance observer (DOB) is introduced to compensate the model uncertainties and is designed with a transfer function of a hydraulic brake dynamics. Through simulations on the model uncertainties, it is verified that the sliding mode control with the DOB can give the simulation results better than the sliding mode control without the DOB.

  • PDF

Position Control of DC Motor Using the Sliding Mode Control with Distur bance Ovserver (외란 관측기를 가지는 슬라이딩 모드 제어를 사용한 직류 전동기의 위치 제어)

  • 문용기;이정훈;이대식;이주장;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.135-143
    • /
    • 1992
  • A novel sliding mode control with disturbance observer for position control of DC servo motor is presented. The conventional sliding mode controller changes the control structure depending on the state of switching surface and consequently, the control law is discontinuous and theoretically chatters at an infinite frequency. To overcome this problem in view of the practical implementation, the disturbance observer is used to compensate the effects of the parameter variations and the load disturvances. We can obtain the performance predetermined by the switching surface with continuous control law while the controlled system remains robust. The performance of the proposed controller with that of the conventional sliding mode controller through digital computer simulation and experiment.

Sensorless Position Control of a PM Linear Synchronous Motor by Sliding Mode (슬라이딩모드 관측기를 이용한 영구자석 선형 동기전동기의 센서리스 위치제어)

  • Son, Young-Dae;No, Dong-Hun;Cho, Sung-Ho;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1154-1156
    • /
    • 2001
  • This paper presents the implementation of a positon sensorless vector control system of a PM linear synchronous motor by sliding mode observer based on TMS320F240 DSP controller. Sliding mode observer estimates the secondary velocity and position based on the measurement of current, and it shows very robust characteristic to parameter variation. Therefore, it improves the system performance deterioration caused by system parameter variations. Simulation and experimental considerations are presented to confirm the applicability of sliding mode observer to the sensorless position control of PMLSM.

  • PDF

Sliding Mode Observer for Uncertain Systems with Mismatched Uncertainties: An LMI Approach (LMI를 이용한 불확실한 시스템의 슬라이딩 모드 관측기 설계)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1757-1758
    • /
    • 2006
  • This paper considers a method to design sliding mode observers for a class of uncertain systems using Linear Matrix Inequalities(LMI). In an LMI-based sliding mode observer design method for a class of uncertain systems the switching surface is set to be the difference between the observer and system output. In terms of LMIs, a necessary and sufficient condition is derived for the existence of a sliding-mode observer guaranteeing a stable sliding motion on the switching surface. The gain matrices of the sliding-mode observer are characterized using the solution of the LMI existence condition. The results are illustrated by an example.

  • PDF

The Speed and Position Sensorless Control of PMSM using the Sliding Mode Observer (슬라이딩 모드 관측기를 이용한 영구자석 동기전동기 위치 및 속도 센서리스 제어)

  • Han, Yoon-Seok;Choi, Jung-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2540-2542
    • /
    • 1999
  • This paper presents a new speed and position sensorless control method of permanent magnet synchronous motors based on the sliding mode observer. The sliding mode observer structure and its design method are described. Also, Lyapunov functions are chosen for determining the adaptive law for the speed and the stator resistance estimator. The effectiveness of the proposed observer is confirmed by the experimental results.

  • PDF

Sensorless Indirect Vector Control of Induction Motor using Sliding Mode Observer (슬라이딩 모드 관측기에 의한 유도전동기 센서리스 벡터제어)

  • Shin, Jong-Ryeol;Kwon, Soon-Man;Lee, Jong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.340-342
    • /
    • 2005
  • This paper describes the speed-sensorless vector control system of a three-phase induction motor using sliding mode flux/speed observer. The sliding mode observer estimates the rotor speed. The error between the actual and observed currents converges to zero which guarantees the accuracy of the flux observer. The convergence of nonlinear time-varying observer along with the asymptotic stability of the controller was analyzed. To define the control action which maintains the motion on the sliding manifold, an "equivalent control" concept was used. It was simulated and implemented on a sensorless indirect vector drive for 750[W] three-phase induction motor. The simulation and experimental results demonstrated the effectiveness of the proposed estimation method.

  • PDF

Self-Recurrent Wavelet Neural Network Observer Based Sliding Mode Control for Nonlinear Systems (자기 회귀 웨이블릿 신경 회로망 관측기 기반 비선형 시스템의 슬라이딩 모드 제어)

  • You, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2236-2238
    • /
    • 2004
  • This paper proposes the self-recurrent wavelet neural network (SRWNN) observer based sliding mode control (SMC) method for nonlinear systems. Unlike the classical SMC, we assume that all states of nonlinear systems are not measured and design the SRWNN observer to measure the states of nonlinear systems. The SRWNN in the observer is used for approximating the observer system's gain. To generate the control input for controlling the nonlinear system, the measured states are used. The sliding surface with a boundary layer is defined to remove the chattering of the control input. Simulation result to show the effectiveness of the SRWNN observer is presented.

  • PDF

Efficiency Optimization with Sliding Mode Observer for Induction Motor (슬라이딩 모드 관측기를 이용한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.74-76
    • /
    • 2009
  • In this paper, search method and sliding mode observer are developed for efficiency optimization of induction motor. The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. The search controller is based on the "Rosenbrock" method and finds the flux level at the minimum input power of induction motor. Once this optimal flux level has been determined, this information is utilized to update the rule base of a fuzzy controller A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is also used to compensate for mechanical uncertainties in the speed control of induction motor. Simulation results are presented to validate the proposed controller.

  • PDF

Position Control for the XY Drive System with Lu-Gre Friction Model (Lu-Gre 마찰 모델을 갖는 XY구동계의 위치제어)

  • 한성익;방두열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.186-189
    • /
    • 2001
  • In a precise control system, the Lu-Gre friction model has often been used to describe the nonlinear friction. For the XY table system with this friction model, we identified the friction parameters and designed nonlinear observer. The nonlinear friction effects could be removed within appropriate position tracking errors and control inputs through experiments. Also, we designed the nonmodel-based SMC system to compensate the nonlinear friction. Through experiments, it is shown that this method has the similar performance compared with the nonlinear observer system and is useful when friction parameters are hard to identify except the problem of input chattering.

  • PDF

Control of Z-Source MSVPWM Inverter for DGS (DGS용 Z-원 MSVPWM 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.277-278
    • /
    • 2006
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control.

  • PDF