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Abstract - This paper considers a method to design sliding mode
observers for a class of uncertain systems using Linear Matrix
Inequalities(LMD. In an LMI-based sliding mode observer design method
for a class of uncertain systems the switching surface is set to be the
difference between the observer and system output. In terms of LMIs, a
necessary and sufficient condition is derived for the existence of a
sliding-mode observer guaranteeing a stable sliding motion on the
switching surface. The gain matrices of the sliding-mode observer are
characterized using the solution of the LMI existence condition. The
results are illustrated by an example.

1. Introduction

Sliding mode observers differ from linear Luenberger observers in that

there is a non-linear discontinuous term injected into the observer
depending on the output estimation error. These observers are more
robust than Luenberger observers, as the discontinuous term enables the
observer to reject disturbances, and also a class of mismatch between
system and observer. The discontinuous term is designed to drive the
trajectories of the observer so that the state estimation error vector is
forced onto and subsequently remains on a surface in the error space.
This motion is referred to as the sliding mode{l]. In most cases, the
sliding surface is set to be the difference between the observer and
system output which is therefore forced to be zero. When a sliding mode
is achieved the system will experience a reduced order motion which is
insensitive to a class of system/plant mismatch. Utkin designed a simple
observer, with only the discontinuous term being feedback through an
appropriate gain. Walcott and Zak designed an observer which also has
the output error being fed back linearly and used a Lyapunov approach
to prove stability. The method in [1] invariably requires a symbolic
manipulation package to solve the synthesis problem which is formulated.
Their method described in [2] utilized both linear and discontinuous
output error injection. A method for computing the gain associated with
the linear output error injection term is presented. The solution is
explicit, but does not exploit all the degree of freedom.

Several authors have proposed sliding mode observer design
methods[1-10). The method of Walcott and Zak{1] requires a symbolic
manipulation package to solve the design problem. Edwards and
Spurgeron[2] proposed a canonical form for sliding mode observer design
and they give a numerically tractable method for computing the gain
matrices of sliding mode observers and the state transformation matrix
to obtain the canonical form. Tan and Edwards[3] proposed an
LMI-based sliding mode observer design method based on [2]. Because
both methods [2] used state transformation they require not only finding
state transformation matrices but also changing co-ordinates to obtain
the canonical form, and therefore they are indirect and more or less
complex. Considering these facts, an LMI-based sliding mode observer
design methods proposed which does not require state transformation. As
in the previous method [3] the switching surface is set to be the
difference between the observer and system output. All the methods
given in [8-10] and the references therein do not guarantee that the
sliding mode dynamics 1s completely invariant to mismatched
uncertainties.

Using LMIs a necessary and sufficient condition is derived for the
existence of a sliding mode observer guaranteeing a stable sliding motion
on the switching surface that is insensitive to matched uncertainties. In
terms of the solution of the LMI existence condition, explicit formulas of
the gain matrices of the sliding mode observer are derived {6]. Because
the approach is based on LMIs, it offers degrees of freedom which can
be used to improve the design [3]. The approach does not require a
change of system model in to canonical form as in the previous

methods[2], thus the approach is direct and has advantages in
computation aspect The new invariance condition is stated in terms of
simple linear matrix inequalities. The feasibility of the condition can be
easily tested and a feasible controller that guarantees the invariance can
be determined efficiently via LMI optimization, thus one can easily
design sliding surfaces by using proposed method.

2. Main resuits

2-1 Preliminaries
Consider the following dynamical equation:

z(t) = Az (t) + Bult) + Az(t) + Det,z,u) 0)]
y(t) = ()

where z{t)ER" is the state, u(t)SR™ is the control, ¥(t)ERP is the
output, and the following assumptions are satisfied:

1 ASR'" BER™*™ AER™" C=RP*"and DER'™" are
constant matrices.

2. Matrices C and D are full rank and p = g¢.

3. The function &(t,z,u) is  unknown but bounded as
Netzu) | <r lull+B(ty) where ris a known scalar and
B: R*x RP—R" is a known function.

Utilizing this assumption, Consider an observer of the form

2(t) = (A+A)2(t) + Bult) ~ Lz(t) — y(t) + G @
y(t) = G(t)

where LER"™P, G, ER"™® are the gain matrix and a design

parameter satisfying rack(CH) =p. The discontinuous vector » is
defined by

e
=—plt,z,u) | F§ —2—
v=—p(t,z,u) | FIl Te, 0 (3

where e, =y—y and F is symmetric positive definite. The matrix F
will be formally defined in section 2-2 The scalar function
pi RY*XRPX R"—R* satisfies plt,z,u) Zr Hull+8(ty)+v, where
Yo is a positive scalar If the state estimation error e, = ;&— y, then it is
straightforward to show from equation (1) and (2) that

e(t) = (4, — LOe(t) + G,v— DE(t,z,u) )

where p: RYXRPxR™—R*. In [5] show that necessary and sufficient
conditions for existence of a stable sliding motion on
§= {eER" ‘e, =0} that is independent of £ are

1. Rank(CD)=q.

2. invariant zeros of (4,0,C) fie in the open LHP.

Rank(CH) =p is necessary for the existence of the unique equivalent
control{6].
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2-2 A design framework

Theorem 1. Consider the error dynamics (4). There exists a stable
sliding motion on the switching surface e, = C¢=0 that is independent
of &(t,z,u) if and only if there exists a solution matrix P satisfying

P>0, p(P(A+A4,)+(A+4,)"PyT <0,9PD=0 (%)

where ¥ is any full rank matrix whose columns form the basis of the
null space of the matrix C. A

Theorem 2. There exists a solution matrix P satisfying theorem 1. if
and only if the following LMI condition is feasible:

CTXC+EYET >0, (6)
CTXU(A+A,) +ZY=T(A+ 4;)— KC+* <0,
X=x"y=y"

where * denotes blocks that are readily inferred by symmetry and = is
any full rank matrix whose columns form the basis of the null space of
the matrix D7. &

Lemma 1[5). Consider the error dynamics (4). There exists a stable
sliding motion on the switching surface e, = Ct =0 that is independent
of &(t,z,u) if and only if the LMI condition (6) is feasible. Assume that
the LMI condition (6) is feasible for (X, ¥; K) and the gain matrices
are given by

H=(CTxCc+=Y=T)"1¢c” M
L=(CTXC+=Y=")"'K, F=DTCTY.

3. Numerical Example

The new design method proposed in this paper will now be
demonstrated by an example[8].
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where ¢ a,b is an uncertain but bounded time-varying variable ranging
in [~1,1]. let a=0.8 and b= 0.6.

Since a basis of the null space of given DT can be given as
100

—_ {000

E= 910l We apply Theorem 1 and 2 to the above system, and the
001

result are as follows. LMI condition (6) has following feasible solutions,
425.54 —77.693 —269.337

X=|—77693 33858 —33618
—269.333 —33618 33776

—33346 33456

’Y=[33456 — 33406’

—108.01 749.94
Ko | 67229 —62403

71738 ~335.36|

130.28 —6933.8

From lemma 1, The gain matrices can be taken as follows.

—27.178 —18.128 0.0022127 — 0.0048667
L= | 72473 —15979| . |0.0037143 0.011809

—10.944 —12.098|" 7 =10.0011075 — 0.0024358}’

—39.383—27.937 0.0031766 — 0.0069868
F=[110.09 50.055)

Fig.l shows a simulation results, It is seen that the overall error
dynamic system is stable. The all of estimation error converge to zero
as t—>00,
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Fig 1. The estimation error for system states.

4. Conclusions

This paper considered the problem of designing sliding mode observers

for a class of uncertain systems. An LMI existence condition of a sliding
mode observer and was given the gain matrices of the sliding mode
observer using the solution of the LMI existence condition. We have
parameterized such linear switching surface in terms of the solution
matrices to the LMI condition. Simulation results are included to
illustrate the effectiveness of the proposed sliding mode observer.
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