• Title/Summary/Keyword: 스튜어트 플랫폼

Search Result 40, Processing Time 0.027 seconds

A balance maintain system of Stewart platform using AHRS (AHRS를 이용한 스튜어트 플랫폼의 평형 유지 시스템)

  • Kang, Hyunwoo;Kang, Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.37-41
    • /
    • 2013
  • A balance maintain system of Stewart platform using AHRS(Attitude and Heading Reference System) sensor is introduced. The Stewart platform is used for controlling a standing plate to keep up horizontal level at any slopes. To know current leaned degrees, AHRS sensor is used. We made feed-back system that AHRS sensor sends current status and the Stewart platform revises top plate to be equilibrium state.

Development of a Pneumatically Driven 6 DOF Driving Simulator (공기압 구동식 6 DOF 드라이빙 시뮬레이터의 개발)

  • Kim, Geun-Mook;Kang, E-Sok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6090-6097
    • /
    • 2013
  • A pneumatically-driven driving simulator that provides a realistic representation of the driving environment was developed. The motion platform for the driving simulator is a mechatronic device that gives a driver the realistic feeling of an actual vehicle. The cost of the motion platform comprises the largest part of the expenses in developing a driving simulator. In this project, to develop a low-cost motion platform, the self-built motion platform based on the Stewart platform configuration that is constructed by six pneumatic cylinders was used as its actuator. The Stewart platform that moves in response to the operating signals of the joystick showed satisfactory tracking performance. We confirmed the possibility of the driving simulator using rFactor that is a commercially available racing game software.

Study on Forward Kinematics of Stewart Platform Using Neural Network Algorithm together with Newton-Raphson Method (신경망과 뉴톤 랩슨 방법을 이용한 스튜어트 플랫폼의 순기구학 해석에 관한 연구)

  • Goo, Sang-Hwa;Son, Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.156-162
    • /
    • 2001
  • An effective and practical method is presented for solving the forward kinematics of a 6-DOF Stewart Platform, using neural network algorithm together with Newton-Raphson method. An approximated solution is obtained from trained neural network, then it is used as an initial estimate for Newton-Raphson method. A series of accurate solutions are calculated with reasonable speed for the entire workspace of the platform. The solution procedure can be used for driving a real-time simulation platform.

  • PDF

The Analysis of the Forward Kinematics Using the Competitive Method in the Stewart Platform (경쟁기법을 이용한 스튜어트 플랫폼의 순기구학 해석)

  • 허성준;이형상;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.255-258
    • /
    • 2001
  • This introduces a improved method of the forward kinematics analysis, which finds the 6DOF motions and velocities from the given six cylinder lengths in the Steward platform. The numerical method(Newton Raphson Mehotd)of the forward kinematics analysises has the disadvantage of the long calculated time. To overcome this, we propose the competitive method that determine a proper initial value. Through the competitive method, we can select a proper initial value so that the calculate time is reduced. therefore we can give the property of the real time process to the forward kinematics analysis. We show the result comparing between general Newton-Raphson method and proposed one. From the result we verify the performance of the proposed method.

  • PDF

Real-Time Estimation of Stewart Platform Forward Kinematic Solution (스튜어트 플랫폼 순기구학 해의 실시간 추정기법)

  • 정규홍;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1632-1642
    • /
    • 1994
  • The Stewart Platform is a six-degree-of-freedom in-parallel-actuated manipiulator mechanism. The kinematic behavior of parallel mechanisms shows inverse characteristics as compared that of serial mechanisms; i.e, the inverse kinematic problem of Stewart Platform is straightforward, but no closed form solution of the forward kinematic problem has been previously presented. Thus it is difficult to calculate the 6 DOF displacement of the platform from the measured lengths of the six actuators in real time. Here, a real-time estimation algorithm which solves the Stewart Platform kinematic problem is proposed and tested through computer simulations and experiments. The proposed algorithm shows stable convergence characteristics, no estimation errors in steady state and good estimation performance with higher sampling rate. In experiments it is shown that the estimation result is the same as that of simulation even in the presence of measurement noise.

A Fast Forward Kinematic Analysis of Stewart Platform (스튜어트 플랫폼의 빠른 순기구학 해석)

  • Ha, Hyeon-Pyo;Han, Myeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.339-352
    • /
    • 2001
  • The inverse kinematics problem of Stewart platform is straightforward, but no closed form solution of the forward kinematic problem has been presented. Since we need the real-time forward kinematic solution in MIMO control and the motion monitoring of the platform, it is important to acquire the 6 DOF displacements of the platform from measured lengths of six cylinders in small sampling period. Newton-Raphson method a simple algorithm and good convergence, but it takes too long calculation time. So we reduce 6 nonlinear kinematic equations to 3 polynomials using Nairs method and 3 polynomials to 2 polynomials. Then Newton-Raphson method is used to solve 3 polynomials and 2 polynomials respectively. We investigate operation counts and performance of three methods which come from the equation reduction and Newton-Raphson method, and choose the best method.

Real-Time Forward Kinematics of the 6-6 Stewart Platform with One Extra Linear Sensor (한 개의 선형 여유센서를 갖는 스튜어트 플랫폼의 실시간 순기구학)

  • Lee, Tae-Young;Shim, Jae-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.541-547
    • /
    • 2000
  • This paper presents the closed-form forward kinematics of the 6-6 Stewart platform of planar base and moving platform. Based on algebraic elimination method and with one extra linear sensor, it first derives an 8th-degree univariate equation and then finds tentative solution sets out of which the actual solution is to be selected. In order to provide more exact solution despite the error between measured sensor value and the theoretical one, a correction method is also used. The overall procedure requires so little computation time that it can be efficiently used for realtime applications. In addition, unlike the iterative schemes e.g. Newton-Raphson, the algorithm does not require initial estimates of solution and is free of the problems that it does not converge to actual solution within limited time. The presented method has been implemented in C language and a numerical example is given to confirm the effectiveness and accuracy of the developed algorithm.

  • PDF

Development of Stewart Platform installed Turntable for Manned Flight Virtual Training Simulator (턴테이블을 적용한 유인비행체 가상훈련 시뮬레이터용 스튜어트 플랫폼 개발)

  • SO, Sangwon;Woo, Jaehoon;Hong, Chunhan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.125-131
    • /
    • 2020
  • In order to study the correlation between the pilot's cognitive ability and recovery ability by applying a physical element that can cause spatial loss of position to the pilot, a turntable was installed on the top of the motion system to give a quantitative rotational error. We propose a method of simulating flight movement to reduce a difference in feeling and an intuitive method of forward kinematic analysis.