• Title/Summary/Keyword: 스칼라 소산율

Search Result 8, Processing Time 0.103 seconds

A Numerical Study for the Scalar Dissipation Rate and the Flame Curvature with Flame Propagation Velocity in a Lifted Flame (부상화염에서 화염전파속도에 따른 스칼라소산율과 곡률반경에 대한 수치적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong;Kim, Kyung-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.46-52
    • /
    • 2010
  • Flame propagation velocity is the one of the main mechanism of the stabilization of triple flame. To quantity the triple flame propagation velocity, Bilger presents the triple flame propagation velocity, depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there has not been any attempt to quantify the triple flame propagation velocity with the flame radius of curvature and scalar dissipation rate. In the present research, there was discussion about the radius of flame curvature and scalar dissipation rate, through the numerical study. As a result, we have known that the flame propagation velocity was linear with the nozzle exit velocity and scalar dissipation rate decreases nonlinearly with the flame propagation velocity and radius of curvature of flame increases linearly. Also radius of curvature of flame decreases non-linearly with the scalar dissipation rate. Therefore, we ascertained that there was corelation among the scalar dissipation rate, radius of flame curvature and flame propagation velocity.

A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate (화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구)

  • Kim, Kyung-Ho;Kim, Tae-Kwon;Park, Jeong;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.47-56
    • /
    • 2011
  • Flame propagation velocity is the one ofmainmechanismof the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there was not presented any relation of these variables, triple flame propagation velocity, radius of flame curvature and scalar dissipation rate indirectly. In the present research, we have checked the results of numerical simulation with experiment and numerical analysis and verified the flame propagation velocity with a scalar dissipation rate proposed by Bilger through the numerical simulation. Also we have clarified that flame propagation velocity was depended on the radius of flame curvature and scalar dissipation rate.

A Study of Correlation between Flame Propagation Velocity and Scalar Dissipation Rate for a Liftoff Flame (부상화염에서 화염전파속도와 스칼라소산율의 상호 관계에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of liftoff flame. To verify reliance of numerical calculation, the liftoff heights of liftoff flame for various fuel exit velocities are compared between the existing experimental research results and the present calculation results. The flame propagation velocity is conducted at the flow redirection point which is on a stoichiometric line ahead of flame front. This point was selected constant distance from triple point regardless of fuel exit velocity at the previous research. This causes considerable errors for the flame propagation velocity and scalar dissipation rate. The main issue of the present research is to establish the resonable method to select the redirection point and so that to clarify the relationship between flame propagation velocity and scalar dissipation rate, which is the core properties in a triple flame stability.

  • PDF

Effects of Fuel-Side dilution and Pressure on Structure and Extinction Scalar Dissipation Rate of Syngas Nonpremixed Flames (질소희석과 압력이 석탄가스 비예혼합 화염구조와 소염 스칼라 소산율에 미치는 영향 해석)

  • Park, Sangwoon;Shin, Youngjun;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.61-62
    • /
    • 2012
  • The present study has numerically investigated the effects of fuel-side dilution and pressure on flame structure and extinction scalar dissipation rate of turbulent syngas nonpremixedd flames. Numerical results indicate that for highly diluted case, peak temperature is decreased and stoichiometric mixture fraction is increased. By decreasing the pressure and the nitrgen dilution levelcreased, the extinction scalar dissipation rate is increased.

  • PDF

A Study on NO Emission Behavior through Preferential Diffusion of $H_2$ and H in $CH_4-H_2$ Laminar Diffusion Flames (메탄-수소 층류확산화염에서 $H_2$와 H의 선호확산이 NO 거동에 미치는 영향에 관한 연구)

  • Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.265-274
    • /
    • 2007
  • A study has been conducted to clarify NO emission behavior through preferential diffusion effects of $H_2$ and H in methane-hydrogen diffusion flames. A comparison is made by employing three species diffusion models. Special concerns are focused on what is the deterministic role of the preferential diffusion effects in flame structure and NO emission. The behavior of maximum flame temperatures with three species diffusion models is not explained by scalar dissipation rate but the nature of chemical kinetics. The preferential diffusion of H into reaction zone suppresses the populations of the chain carrier radicals and then flame temperature while that of $H_2$ produces the increase of flame temperature. These preferential diffusion effects of $H_2$ and H are also discussed about NO emissions through the three species diffusion models.

Species Transport Mechanisnn and Flame Structure of Counterflow Nonpremixed Flame Perturbed by a Vortex (와동에 의해 교란된 대향류 비예혼합화염의 화학종 전달기구 및 화염구조)

  • Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1407-1416
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the flame structure of CH$_4$/$N_2$-Air counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed chemistry were adopted in this computation. The results showed that an initially flat stagnation plane, on which an axial velocity was zero, was deformed into a complex-shaped plane, and an initial stagnation point was moved far away from a vortex head when the counterflow field was perturbed by the vortex. It was noted that the movement of stagnation point could alter the species transport mechanism to the flame surface. It was also identified that the altered species transport mechanism affected the distributions of the mixture fraction and the scalar dissipation rate.

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

A Study on the Flame Configuration and Flame Stability Mechanism with a Nozzle Diameter of Laminar Lifted Jet Flame (층류제트 화염의 노즐직경에 따른 안정화 메커니즘과 화염형상에 관한 연구)

  • Kim, Tae-Kwon;Kim, Kyung-Ho;Ha, Ji-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.204-215
    • /
    • 2011
  • Flame stability is the one of the main mechanism of laminar lifted flame and flame propagation velocity becomes a yardstick to measure the flame stability. Bilge has presented the flame propagation velocity of the triple flame and the flame stability mechanism related the flame configuration and mixture fraction. However, there was not able to observe all process of flame ignition and extinction for small nozzle diameter. In this paper, we have subdivided the flame configuration and stability mechanism and classified the flame behavior with a nozzle diameter. Also we have subdivided the 'triple flame propagation opened' and the 'triple flame propagation closed' from the triple flame propagation of triple flame criterion.