Browse > Article

A Study on NO Emission Behavior through Preferential Diffusion of $H_2$ and H in $CH_4-H_2$ Laminar Diffusion Flames  

Park, Jeong (School of Mechanical Engineering, Pukyung National University)
Kwon, Oh-Boong (School of Mechanical Engineering, Pukyung National University)
Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.18, no.3, 2007 , pp. 265-274 More about this Journal
Abstract
A study has been conducted to clarify NO emission behavior through preferential diffusion effects of $H_2$ and H in methane-hydrogen diffusion flames. A comparison is made by employing three species diffusion models. Special concerns are focused on what is the deterministic role of the preferential diffusion effects in flame structure and NO emission. The behavior of maximum flame temperatures with three species diffusion models is not explained by scalar dissipation rate but the nature of chemical kinetics. The preferential diffusion of H into reaction zone suppresses the populations of the chain carrier radicals and then flame temperature while that of $H_2$ produces the increase of flame temperature. These preferential diffusion effects of $H_2$ and H are also discussed about NO emissions through the three species diffusion models.
Keywords
chain carrier radicals; Fenimore NO; preferential diffusion effects; scalar dissipation rate; thermal NO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, F., Guo, H., Smallwood, G. J., and Gulder, O., 'Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames', Proc. Combust. Inst., Vol. 29, 2002, pp. 1543-1550   DOI   ScienceOn
2 G. P. Smith, D. M. Golden, N. W. Frenklach, M. B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Dong, W. C. Gardiner, Jr.-VV. Lissianski, and Z. Qin, 'The 'GRI-Mech 3.0' chemical kinetic mechanism', , 2007
3 C. G. Bauer and T. W. Forest, 'Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance', Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 55-70   DOI   ScienceOn
4 S. lshiwka and Y. Sakai, 'Structure and tip-opening of ,laminar diffusion flames', Proc. Combust. Inst. Vol. 25, 1986, pp. 2821-1828
5 Westbrook, C. K. and Dryer, F. L., 'Chemical kinetic modeling of hydrocarbon combustion', Prog. Energy Combust. Sci., Vol. 10, 1984, pp. 1-57   DOI   ScienceOn
6 Ruf, B., Behrendt, F., Deutchmann, O., Kleditzsch, S., and Warnatz, J., 'Modeling of chemical deposition of diamond films from acetylene-oxygen flames', Proc. Combust. Inst. Vol. 28, 2000, pp. 1455-1461   DOI   ScienceOn
7 Liu, F. and Gulder, O., 'Effects of $H_2$ and H preferential diffusion and unity Lewis number on superadiabatic flame temperatures in rich premixed methane flames', Combust. Flame Vol. 143, 2005, pp. 264-281   DOI   ScienceOn
8 Kee, R. J., Rupley, F. M., and Miller, J. A., 'Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics', Sandia National Laboratories Report, SAND 89-8009B, 1989
9 Chellian, H. K., Law, C. K., Ueda, T., Smooke, M. D., and Williams, F. A., 'An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames', Proc. Combust. Inst., Vol. 23, 1990, p. 503
10 C. G. Fotache, T. G. Kreutz, and C. K. Law, 'Ignition of hydrogen-enriched methane by heated air', Combust. Flame, Vol. 110, 1997, pp. 429-440   DOI   ScienceOn
11 M. Nishioka, S. Nakagawa, Y. Ishikawa, and T. Takeno, 'NO emission characteristics of methane-air double flame', Combust. Flame, Vol. 98, 1994, pp. 127-36   DOI   ScienceOn
12 M. Karbasi and I. Wierzba, 'The effects of hydrogen addition on the stability limits of methane jet diffusion flames', Int. J. Hydrogen Energy, Vol. 23, 1998, pp. 123-129   DOI   ScienceOn
13 Drake, M. C. and Blint, R. J., 'Structure of Laminar opposed-flow diffusion flames with CO/$H_2$/$N_2$ fuel', Combust. Sci. Tech., Vol. 61, 1988, pp. 187-224   DOI
14 Lutz, A. E., Kee, R. J., Grear, J. F., and Rupley, F. M., 'A fortran program for computing opposed-flow diffusion flames', Sandia National Laboratories Report, SAND 96-8243, 1997
15 S. O. Bade Shresha and G. A. Karim, 'Hydrogen as an additive to methane for spark ignition engine applications', Int. J. Hydrogen Energy, Vol. 24, 1999, pp. 577-586   DOI   ScienceOn
16 G. Yu, C. K. Law, and C. K. Wu, 'Laminar flame speeds of hydrocarbon+air mixtures with hydrogen addition', Combust. Flame, Vol. 63, 1984, pp. 339-347   DOI   ScienceOn
17 C. K. Law and O. C. Kwon, 'Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation', Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 867-879   DOI   ScienceOn
18 Ju, Y., Guo, H., Maruta, K., and Liu, F., 'On the extinction limit and flammabiliy limit non-adiabatic stretched methane-air premixed flames', J. Fluid Mech., Vol. 342, 1997, pp. 315-334   DOI   ScienceOn
19 V. Di Sarli and A. Di Benedette., 'Laminar burning velocity of hydrogen-methane/air premixed flames', Int. J. Hydrogen Energy, Vol. 32, 2007, pp. 637-646   DOI   ScienceOn
20 J. -Y. Ren, W. Qin, F. N. Egolfopoulos, and T. T. Tsotsis, 'Strain-rate Effects on hydrogen -enhanced lean premixed combustion', Combust Flame, Vol. 124, 2001, pp. 717-720   DOI   ScienceOn
21 Takagi, T., Yoshikawa, Y., Komiyama, M., and Kinoshita, S., 'Studies on strained non-premixed flames affected by flame curvature and preferential diffusion', Proc. Combust. Inst., Vol. 26, 1996, pp. 1103-1110   DOI
22 Wang, P., Hu, S., and Pitz, R., 'Numerical investigation of the curvature effects on diffusion flames', Proc. Combust. Inst., Vol. 31, 2007, pp. 989-996   DOI   ScienceOn
23 J. Park, S. I. Keel, and J. H. Yun, 'Addition effects of $H_2$ and $H_2O$ on flame structure and pollutant emission in methane-air diffusion flames', Energy & Fuels, in press
24 R. W. Bilger, 'The structure of turbulent nonpremixed flames', Proc. Combust. Inst., Vol. 22, pp. 475-488
25 P. Dagaut and A. Nicolle, 'Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges', Proc. Combust. Inst., Vol. 30, 2005, pp. 2631-2638   DOI   ScienceOn
26 F. Halter, C. Chauveau, N. Djebaili-Chaumeix, and I. Gokalp, 'Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen -air mixtures', Proc. Combust. Inst., Vol. 30, 2005, pp. 201-208   DOI   ScienceOn
27 G. A. Karim, I. Wierzba, and Y. Al-A1ousi, 'Methane-hydrogen mixtures as fuels', Int. J. Hydrogen Energy, Vol. 21, 1996, pp. 625-631   DOI   ScienceOn
28 Zamashchikov, V. V., Namyatov, I. G., Bunev, V. A., and Babkin V. S., 'On the nature of superadiabatic temperatures in premixed rich hydrocarbon flames', Combust. Explosion Shock Waves, Vol. 40, 2004, pp. 32-5   DOI
29 Kee, R. J., Dixon-Lewis, G., Wamatz, J., Coltrin, M. E., and Miller, J. A., 'A fortran computer code package for the evaluation of gas-phase multi-component transport', Sandia National Laboratories Report, SAND 86-8246, 1994
30 J. Park, J. S. Park, H. P. Kim, J. S. Kim, J. G. Choi, H. C. Cho, K. W. Cho, H. S. Park, 'NO emission behavior in oxy-fuel combustion recirculated with carbon dioxide', Energy & Fuels, Vol. 21, 2007, pp. 121-129   DOI   ScienceOn