• Title/Summary/Keyword: 스러스터

Search Result 12, Processing Time 0.019 seconds

A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters (동적위치제어용 스러스터 사이의 유체역학적 상호작용에 대한 수치해석 연구)

  • Jin, Doo Hwa;Lee, Sang Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.373-380
    • /
    • 2017
  • In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

A Development of New Device for Bow Thruster Tunnel Grids (바우 스러스터 터널 그리드 개선을 위한 연구)

  • Kim, Sung-Pyo;Park, Jae-Jun;Jun, Dong-Su;Kim, Yong-Soo;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.304-312
    • /
    • 2006
  • For protection of the thruster against mechanical damage and reduction of tunnel resistance at ship forward speed, the tunnel grids are normally installed. Some of ship operators however, have a strong distrust of the protective function of the tunnel grids and so they do not want to install the protective grids for higher thruster efficiency. Since the grids should be installed at very close to the side shell as far as possible in due consideration of flow direction to minimize additional resistance induced by tunnel openings, it has been too hard and time consuming work to install the grids on the curved and chamfered tunnel entrances considering its relatively low resistance reduction effect. DSME (Daewoo Shipbuilding & Marine Engineering Co., Ltd) developed a substituting device named TG (Tunnel Guides) for bow thruster tunnel grids which is characterized by higher resistance reduction, higher thruster efficiency and easy to installation. This paper provides the principle idea of the TG with short history of the development using CFD calculations and model experiments in MOERI (former KRISO).

A Study on the Design and Performance Test of Side Thruster (사이드 스러스터 설계 및 성능평가에 관한 연구)

  • Kim, Hyeong-Min;Kim, Lae-Sung;Cho, Sung-Hyun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, we present a study concerning the design of a 400 N class side thruster for small ships. The side thrusters used in Korea are imported from abroad. The performance and durability of the imported products employed in Korea are not adequate, therefore the side thrusters which will be suitable for Korean domestic needs to be re-designed. The strength calculation of the side thruster was performed by KS standard. Strength calculation and design were made to meet design requirements. Structural analysis and safety factor analysis were carried out to confirm the validity of strength calculations and design. After manufacturing the bevel gear, a back lash test was conducted. We also conducted a no-load test, a rated load, and an overload test for a performance test and a durability test of the design while satisfying the design conditions.

A Study on the Concept Design of Automatic Vessel Berthing Program (선박자동접안 프로그램 개념설계에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.857-862
    • /
    • 2023
  • In order for an autonomous ship to arrive near the pier and automatically berth without the help of a tugboat or pilot, it is necessary to recognize the pier and calculate the thruster output and output angle for berthing to the pier at a fixed berthing speed under given external force conditions. Therefore, in this study, the external force and moment acting on the ship while berthing were analyzed, and the thruster output calculation for automatic berthing was designed and the basic concept for the development of the automatic berthing program was designed. The wind pressure applied to the hull by the wind while the ship is berthing was calculated based on the wind pressure area and the wind direction angle and the turning moment to rotate the ship according to the transverse force of the ship was calculated. Considering the force acting on the ship and the turning moment during berthing, a theoretical formula was presented to calculate the thruster output and output angle for berthing parallel to the pier, and the turning due to other variables was controlled by the PID controller. In addition, the basic concept for program development was presented by analyzing the input elements necessary for the theoretical formula.

A Study on the Development of Maneuvering Mathematical Model and Maneuvering Simulation for a Mobile Harbor (모바일하버의 조종운동 수학모델 구축 및 조종 시뮬레이션 개발에 관한 연구)

  • Jeong, Jae-Hun;Lee, Seung-Keon;Lee, Chang-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.629-634
    • /
    • 2010
  • Mathematical model of maneuvering motion for a Mobile Harbor is established and versatile applications to the special situations of maneuvering are attempted. The Mobile Harbor in this research has twin Azipod thruster and twin bow thruster. In order to predict the maneuverability of Mobile Harbor, a mathematical model was developed on the basis of MMG model, and some model test results were adopted for the simulation of Mobile Harbor. As a result, the turning motions of the Mobile Harbor were successfully calculated. and the optimal berthing system was completed.

항내 조선 중 전심과 수저항 중심에 관한 비교 연구

  • Cheon, Seong-Min;Heo, Yong-Beom;Jeong, Tae-Gwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.71-74
    • /
    • 2016
  • 선박이 대형화됨에 따라 안전과 효율 측면에서 항내 선박 조종의 중요성은 점차 커지고 있다. 항내 선박 조종은 저속 또는 극미속 상태에서 이루어지며 항만 혼잡도에 큰 영향을 받는다. 항내 선박 조종시 예선과 선수미 스러스터, 기관과 키를 사용할 때, 항해사와 도선사들이 전심을 모멘트의 레버리지 중심으로 생각하고 있다. 전심은 전통적으로 선박이 전진할 때 선수에서 1/3L, 후진할 때 선미에서 1/4L 부근에 위치한다고 알려져 있으나 조류, 바람, 예선 등 외력의 힘이 작용했을 때 전심의 위치는 변하게 된다. 본 연구에서는 전심의 위치를 다양한 사례를 통하여 조사하여 선박조종에 활용상의 문제점을 밝히고 이 대신에 선체의 수저항 중심을 선박조종상 예선, 키, 쓰러스터 등에 의한 힘들의 중심 사이에 작용하는 우력으로 제안하고 이를 항내 선박 조종에서의 활용할 수 있는 사례를 제시한다.

  • PDF

NUMERICAL STUDY ON DPS THRUSTER-HULL INTERACTION WITH DIFFERENT AXIS TILTING ANGLE (축기울기에 따른 DPS 스러스터와 선체의 상호간섭 수치해석)

  • Jin, D.-H.;Lee, S.-W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.72-77
    • /
    • 2016
  • In this study, effects of thurster axis tilting angle on the thruster-hull interaction and propulsion performance in a dynamic positioning system of offshore plant are numerically investigated. Straight and 7-degree tilted downward thruster models as a form of ducted propeller are considered. For numerical simulations, Reynolds averaged Navier-Stokes equations with SST turbulence model are solved by using STAR-CCM+. Results show that thruster-hull interaction is reduced in 7-degree tilted thruster model with lower vortex strength between thruster and hull bottom, although the propulsion performance does not have noticeable difference in a bollard condition.

A Study on Full-scale Maneuvering Trials using Bow Thruster (선수 스러스터를 이용한 실선스케일 조종시험에 관한 연구)

  • Park, Jong-Yong;Lee, Jun-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.52-59
    • /
    • 2020
  • This study aims to investigate the bow thruster performance of the research vessel "NARA" by full-scale maneuvering trials. The thruster test method refers to ITTC's recommended procedures and guidelines. Turning tests with the bow thruster are performed at speed conditions of 0, 2, and 4 knots. The test results indicate that the Rate of Turn (ROT) increased when the ship is in a higher speed condition. Due to the position of the propeller and the housing of the bow thruster, there is difference in the efficiency of the bow thruster according to the turning direction. Zigzag tests with the bow thruster were conducted at speed conditions of 2 and 4 knots. At speeds above 4 knots, it seems difficult to change the course only with the bow thruster.

A Study on Full-Scale Crabbing Test Using Dynamic Positioning System (동적위치제어시스템을 이용한 선박의 실선스케일 횡이동시험에 관한 연구)

  • Park, Jong-Yong;Lee, Jun-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.345-352
    • /
    • 2020
  • This study aims to investigate the crabbing motion of the research vessel "NARA" by full-scale maneuvering trials. The crabbing test method refers to ITTC recommended procedures and guidelines. In order to minimize the fluctuation of the heading angle due to the external force acting on the hull during the pure lateral motion, the tests are conducted using the dynamic positioning system applied to the ship. The test results are analyzed by applying a low-pass filter to remove the noise included in the measurement data. Three conditions are set to define the steady state of crabbing motion. The index to be derived from the crabbing test is quantitatively presented. The ship is confirmed to be capable of the lateral motion of up to 0.844m/s in Beaufort 3.

A Study on the Improvement of Steering Command System through Accident Analysis of Azimuth thruster using STAMP Method

  • HyunDong Kim;SangHoon Lee;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.149-158
    • /
    • 2023
  • With the global paradigm shift towards climate change, the shipbuilding industry is also considering propulsion systems that utilize eco-friendly fuels various propulsion systems are gaining attention as a result. In conventional propulsion systems, typically consisting of propellers and rudders, have evolved into a diverse range of systems due to the development of a special propulsion system known as the azimuth thruster. While azimuth thrusters were previously commonly installed on tugboats, they are now extensively used on offshore plant operation ships equipped with dynamic positioning systems. However, these azimuth thrusters require different steering methods compared to conventional propulsion systems, leading to a significant learning curve for the crew members boarding such vessels. Furthermore the availability of education related to these special propulsion systems is limited. This study aims to analyze accidents caused by inadequate control of vessels equipped with azimuth thrusters using the STAMP technique. And it proposes the necessity of standard steering commands for the safe operation of vessels equipped with special propellers.