본 논문에서는 텐서 스플라인을 이용하여, 일반화된 선형모형의 회귀합수를 자료에만 의존 하는 방식으로 추정하는 문제를 고려하였다. 최우 추정법을 이용하여 회귀 함수를 추정하는 데, 이용된 텐서 스틀라인은 접목점의 수가 유한개이며, 독립변수 영역의 주변에서는 선형으 로 제한되었다. 접목점을 자료의 각 좌표의 순서 통계량에 위치하도록 했고 그 수는 AIC의 변형된 식을 최소로 하는 수로 결정 했다. 모의 실험 예를 통하여 추정량을 예시하였다.
$p=(p_{}1,p_{2},{\cdots},p_{k})^{T}$의 확률벡터를 가진 다항분포로부터 관측된 칸 돗수(cell frequency) 벡터가 $N=(N_{1},N_{2},{\cdots},N_{k})^{T}$이며 ${\sum}{\limits}_{j=1}^{k}N_{j}=n$이라 하자. 총돗수 n이 칸의 총갯수 k에 비하여 상대적으로 매우 작을 때 이러한 이산형 자료를 희박다항분포자료(sparse multinomial data)라 한다. 이러한 희박다항분포자료의 칸들이 순서화 되어 있을 때 우리는 i번째 칸의 확률 $p_{i}$를 돗수 추정량 $N_{j}/n$ 들을 평활함으로써 추정 할 수 있다. Aerts, et al.(1997)과 Baek(1998) 등에 의해 제안된 국소최소제곱기준에 근거한 국소다항커널추정량은 희박점근일치성의 좋은 성질을 가짐에도 불구하고 확률추정지가 음수값을 가질 수 있는 단점을 내포하고 있다. 본 연구에서는 이러한 단점을 극복하기 위하여 국소최대우도 기준에 근거한 새로운 커널추정량을 제안하고, 그것의 점근적 성질을 연구하였다.
Journal of the Korean Data and Information Science Society
/
제28권1호
/
pp.87-98
/
2017
일변량 이상의 다변량 경험분포함수의 정의를 새롭게 제안하고, 경험분포함수의 기대값과 분산을 유도하면서 다변량 경험분포함수가 실제의 분포함수로 수렴함을 확인한다. 그리고 다양한 상관계수의 이변량 표준정규분포에서 추출한 확률표본을 바탕으로 이변량 경험분포함수를 구하고 이를 이차원 평면에 시각적으로 표현하는 두 종류의 그래픽적인 방법을 제안한다. 하나는 계단으로 표현하여 계단식 함수와 유사한 성격을 갖고 있는 방법이고, 다른 하나는 이변량 분위벡터로 설명되는 그림 방법이다. 두 종류의 시각적인 표현 방법은 삼차원으로 표현할 수 있으나 이차원 평면으로도 쉽게 구현이 가능하며, 일반적으로 이변량 누적분포함수의 모든 특징을 충분히 설명할 수 있다. 따라서 삼변량 경험분포함수를 시각적 표현이 가능함을 보인다. 이변량과 사변량의 실증 예제를 통하여 본 연구에서 제안한 다변량 경험분포함수와 이차원 평면에 표현하는 시각적인 표현 방법들을 구현하고 탐색한다.
회귀모형의 대표적인 추정법인 최소제곱법은 오차항의 분포가 정규분포를 따르고 이상치가 없는 상황에서는 최적이지만, 자료가 회귀모형의 가정을 만족하지 않을 경우 또는 이상치를 포함하는 경우와 같이 자료가 오염된 상황에서는 왜곡된 추정 결과를 준다. 따라서 이상치에 민감한 최소제곱법의 단점을 보완하기 위해 다양한 로버스트 추정방법이 제안되었다. 본 논문에서는 MLE를 기반으로 제안된 M 추정량, 순서형 통계량을 기반으로 제안된 L 추정량, 잔차의 순위를 기반으로 제안된 R 추정량 계열에서 높은 붕괴점 또는 높은 효율을 갖는 대표적인 추정량들을 다양한 모의실험을 통해 비교 연구하였다. 추정량의 성능을 비교하는데 효율성 뿐만 아니라 편의, 분산을 포함한 분포를 살펴보았다. 그 결과 실제 데이터 적용에는 MM 추정량과 GR 추정량이 좋은 성능을 가진 것으로 보였다.
마이크로어레이 실험의 실험자들은 원 측정치인 영상을 조사하여 통계적 분석이 가능한 자료의 형태로 변환하는데 이러한 과정을 흔히 사전 처리라고 부른다. 마이크로어레이의 사전 처리는 불량 영상의 제거(filtering), 결측치의 대치와 표준화로 세분되어질 수 있다. 표준화 방법과 결측치 대치 방법 각각에 대하여서는 많은 연구가 보고되었으나, 사전 처리를 구성하는 원소들간의 적정한 순서에 대하여서는 연구가 미흡하다. 표준화 방법과 결측치 대치 방법 중 어느 것이 먼저 실시되어야 하는지에 대하여서 아직 알려진 바가 없다. 본 연구는 사전 처리 순서에 대한 탐색적 시도로서 대장암과 위암을 대상으로 실시한 두 조의 cDNA 마이크로어레이 실험 자료를 이용하여 사전 처리를 구성하는 원소들간의 다양한 순서에 따라 검색된 특이 발현 유전자 군이 어떻게 변화하는지를 분석하고 있다. 즉, 결측치대치와 표준화의 여러가지 방법들의 조합에 따라 검색된 특이 발현 유전자 군이 얼마나 일치적인가를 확인하고자 한다. 결측치 대치 방법으로는 K 최근접 이웃 방법과 베이지안 주성분 분석을 고려하였고, 표준화 방법으로는 전체 표준화, 블럭별 국소(within-print tip group) 평활 표준화 그리고 분산 안정화를 유도하는 표준화 방법을 적용하였다. 따라서 사전 처리를 구성하는 두개 원소가 각각 2개 수준과 3개 수준을 가지고 있고, 두개 원소의 순열에 따른 모든 가능한 사전 처리 개수 수는 12개가 된다. 본 연구에서는 12개 사전 처리 방법 각각에 따라 정상 조직과 암 조직간 특이적으로 발현하는 유전자 군을 검색하였고, 사전 처리 순서를 바꾸었을때 유전자 군이 얼마나 일치적으로 유지되는지를 파악하고 있다. 표준화 방법으로 분산 안정화 표준화를 사용할 경우는 사전 처리 순서에 따라 특이 발현 유전자 군이 다소 민감하게 변하는 것을 보이고 있다.
확률도시위치는 주로 도시적 해석을 통한 연최대홍수량 또는 연최대강우량의 초과확률의 추정치 산정에 사용되며 빈도해석을 통해 선정된 적정 확률분포형과 표본자료의 적합도를 도시적으로 파악할 수 있도록 해주기 때문에 오래 전부터 수문 및 수자원 분야에 널리 이용되어 왔다. 본 연구에서는 Gumbel 분포에 적합한 도시위치공식을 추정하고자 Gumbel 분포의 순서통계량과 확률가중모멘트를 이용하여 다양한 표본크기에 대한 도시위치공식의 기본식을 유도하였고, 최적화 기법 중 하나인 유전자 알고리즘을 이용하여 도시위치공식의 매개변수를 추정하였다. 또한 Gumbel 분포에 적합한 도시위치공식을 검토하고자 Gumbel 분포의 이론적인 축소변량과 본 연구에서 추정한 도시위치공식과 기존의 도시위치공식에 의해 계산된 축소변량 간의 평균제곱근오차와 편의를 비교하였다. 그 결과, Gringorten이 제안한 도시위치공식을 적용한 경우의 축소변량간 평균제곱근오차와 순서별 편의가 가장 작은 것으로 분석되었다.
두 평정자가 R개의 순서형 반응 범주로 각 개체를 분류한 $R{\times}R$ 분할표에 대해, 불합치의 정도를 가중치로 부여한 가중 합치도 $H_{\omega}$를 제안하고, 최대 우도추정량 및 분산을 유도하였다. 또한 $2{\times}2$ 분할표에서 Feinstein과 Cicchetti(1990)가 제기한 마지막 역설을 새롭게 정의하고 증명하였으며, ${\kappa}$의 새로운 역설을 제기하고, ${\kappa}$와 주변분포의 전반적인 관계를 정리하였다.
다차원척도법(MDS)에서는 대게 개체간의 거리나 유사성이 대칭성을 따른다. 따라서 비대칭 거리를 다루기는 쉽지 않다. 통용되고 있는 비대칭 다차원척도법도 여전히 결과를 해석하는데 어려움이 있다. 본 연구는 비대칭행렬의 순서 통계량을 활용하여 더 간단한 비대칭 대차원척도법을 제안한다. 제안된 웹(Web) 방법은 개체간의 영향력을 사용자들이 해석을 쉽게 하도록 화살표의 방향크기와 모양에 따라 시각화하여 보여준다.
본 연구는 복합운동 유형 순서 변화에 따른 생리적, 생화학적 변화를 비교 하고자 40대 비만여성(n=18)을 대상으로 12주간 복합운동을 실시하였다. 복합운동 유형은 유산소성 운동과 저항성 운동그룹 A(n=9) 그리고 저항성 운동과 유산소성 운동그룹 B(=9)로 구성하였다. 체지방량의 경우 A그룹의 평균변화량이 B그룹 평균변화량보다 더 많이 감소하였고 통계적으로 유의한 차이를 보였다(p<0.01). 혈당의 경우는 A그룹보다는 B그룹이 더 많이 감소하였으며 통계적으로 유의한 차이를 보였다(p<0.01). 따라서, 비만 중년 여성의 체중감량을 위한 신체구성 변화 유도를 위해서는 복합운동의 순서 변화에 따른 운동유형이 선택적으로 사용되어질 수 있다.
본 논문은 베이지안 통계 추론에 대하여 논의한다. 논문은 베이지안 추론, Markov Chain과 Monte Carlo 적분, MCMC(Markov Chain Monte Carlo) 기법, Metropolis-Hastings 알고리즘, Gibbs 샘플링, Maximum Likelihood Estimation, EM 알고리즘, 상실된 데이터 보완 기법, BMA(Bayesian Model Averaging) 순서로 논의를 진행한다. 이러한 통계적 기법들은 대용량의 데이터를 처리하는 생물학, 의학, 생명 공학, 과학과 공학, 그리고 일반 데이터 조사와 처리 등에 사용되고 있으며, 최적의 추론 결과를 이끌어 내는데 중요한 방법을 제공하고 있다. 그리고 마지막으로 PC(Principal Component) 분석 기법에 대하여 논의한다. PC 분석 기법도 데이터 분석과 연구에 많이 활용된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.