• Title/Summary/Keyword: 수화물 변화

Search Result 222, Processing Time 0.025 seconds

Evaluation of Apparent Chloride Diffusion Coefficient and Surface Chloride Contents of FA concrete Exposed Splash zone Considering Crack Width (비말 지역에 노출된 FA 콘크리트의 균열을 고려한 겉보기 염화물 확산계수 및 표면 염화물량 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • The cracks occurred during service life of concrete structure should be considered in durability design, because of the concrete's material property which is weak in tensile strength. In this study, the fly ash concrete mixtures considering 2 levels of strength is designed and outdoor exposure tests are conducted for those concrete specimens. The exposure environment is set to a splash zone, and in order to evaluate the effect of crack width on the behavior of chloride diffusion, the crack width of up to 1.0 mm is generated at intervals of 0.1 mm at each concrete mixture. After that, apparent chloride diffusion coefficient and surface chloride contents are deducted considering 3 levels of exposure periods(180 days, 365 days, 730 days). The diffusion coefficients of two types of mixture increase with the increase of crack width, and the diffusion coefficients decrease with the increase of exposure periods. In addition, the effect of the crack width on the diffusion coefficient is reduced as the exposure periods increase, which is attributed to the extra hydrate by chloride ion reducing the diffusivity of concrete. The behavior of the surface chloride contents does not significantly change by the increase in crack width, compared to the behavior of apparent chloride diffusion coefficient. Also, In the high strength FA concrete mixture, the surface chloride contents are 78.9 % ~ 90.7 % than the normal FA strength concrete mixture. Thus, Surface chloride contents have correlation with the strength of concrete.

Changes of Texture, Soluble Solids and Protein during Cooking of Soybeans (콩의 조리과정 중 텍스쳐, 고형물 및 단백질의 변화)

  • Kim, Young-Ok;Jung, Hae-Ok;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.192-198
    • /
    • 1990
  • Texture, losses of total solids and proteins o) soybeans were studied during cooking at $100-135^{\circ}C$. The textural changes were measured using the puncture probe with an Instron Universal Testing Machine, and changes in microstructure of beans were observed with scanning electron microscopy during the cooking. The major effect observed was a breakdown of the cell walls and appearance of the protein bodies with soaking process. As the cooking time at $100^{\circ}C$ is longer, the separation of cells and changes in cell shape could be seen in the sample. The greater amounts of soluble solids were leached out with longer coo king time from the beans.

  • PDF

Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral (가역 감온 변색 겔형 염화 코발트/polyvinyl butyral을 이용한 온도 감지 광섬유 센서 연구)

  • Hwang, KiSeob;Park, JeaHee;Ha, KiRyong;Lee, JunYoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at $25^{\circ}C$ to 7.1% and 48 nW at $70^{\circ}C$, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

Physical and Mechanical Properties of Magnesium Oxide Matrix depending on Addition Ratio of Magnesium Chloride (염화마그네슘 첨가율에 따른 산화마그네슘 경화체의 물리 및 역학적 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Recently, for longevity of resident building, the main trend is that the change of the inside space organization of resident building from wall construction to rhamen construction, which resulted in increase in use of lightweight composite panel. Thus, in this study, authors analyzed the engineering property of oxide of magnesium depending on the magnesium chloride addition ratio. The results of this research is expected to contribute on providing a fundamental material for the surface materials of lightweight composite panel. As the result of the experiment, as fluidity increased, air content decreased and initial set and final set as the magnesium chloride addition ratio increase. In the aspect of flexural strength and compressive strength, the test specimen showed the highest strength at 40% of the magnesium chloride addition ratio. At 20% of the magnesium chloride addition ratio, the test specimen showed the lowest water absorption rate. As the magnesium chloride addition ratio increases, the expansibility tends to increase as well in the aspect of shrinkage strain. After observing microstructure, we can see hydration products in the form of needle. It appeared high flexural strength because the hydration products have mineral fibrous tissue shape, which also contribute to the cause of the expansibility.

Deterioration Assessment and Conservational Scientific Diagnosis of the Stone Pagoda in the Bunhwangsa temple, Gyeongju, Korea (경주 분황사석탑의 풍화훼손도 평가와 보존과학적 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Lee, Myeong-Seong
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.19-32
    • /
    • 2006
  • The stone pagoda of the Bunhwangsa temple made by piling small brick-shaped stones. The major rock forming stone bricks are andesites with variable genesis. Rock properties of the pagoda roof stone suffer partly including multiple peel-offs, exfoliation, decomposition like onion peels, cracks forming round lines and falling off stone pieces. The stylobates and tabernacles in all the four directions the pagoda are mostly composed of granitic rocks. Those rock properties are heavily contaminated by lichens and mosses with the often marks of inorganic contamination by secondary hydrates that are dark black or yellowish brown. Within the four tabernacles and northern pagoda body situated to relatively high humidity. There are even light gray precipitate looking like stalactites between the northern and western rocks of the body Their major minerals are calcite, gypsum and clays. The stone lion standing in the southeast and northeast side are alkali granite, while that in the southwest and northwest lithic tuff. Total rock properties of the pagoda are 9,708 pieces, among the all properties, fractured blocks are 11.0%, fall out blocks are 6.7% and covered blocks by precipitates are 7.0%, respectively. The pagoda has highly deteriorated the functions of the rock properties due to physical, chemical and biological weathering, therefore, we suggest that this pagoda has need to do long term monitoring and synthetic conservation researches.

  • PDF

Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration (염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사)

  • Yunsuk Kang;Gwihwan Lim;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.381-390
    • /
    • 2023
  • In this study, the mechanical performance of concrete exposed to chloride ion penetration was investigated. And a compressive stress-strain model was presented. CaCl2 solution was added when mixing concrete to simulate long-term chloride ion penetration, and the concentration of chlorine ions was set to 0, 1, 2, and 4 % based on the weight of the binder. To investigate the compressive stress-strain curve after the peak stress of concrete, the compressive strength was measured by displacement control. When the chlorine ion concentration was 1 %, peak stress increased, but when the chlorine ion concentration was 2 % or more, peak stress decreased. In the case of peak strain, no trend according to chloride ion concentration was observed at 7 days. At 28 days, peak strain decreased as the chloride ion concentration increased. A compressive stress-strain curve model based on the Popovics model was presented using changes in peak stress and peak strain at 28 days. Microstructure analyses were performed to investigate the cause of the decrease in mechanical performance as the concentration of chlorine ions increased. It was confirmed that as the concentration of chlorine ion increased, Friedel's salt increased and portlandite decreased.

A Proposal of Autogenous Deformation and Self-induced Restrained Stress Test Using Thermal Analysis Results to Predict Early-Age Cracks of Externally Restrained Concrete Members (외부구속 콘크리트 부재의 초기균열 예측을 위해 온도해석 결과를 이용한 자가변형 및 구속응력 측정 실험의 제안)

  • Byun, Jong-Kwan;Kang, Won Ho;Kang, Jeong-Kil;Bae, Seong-Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • It is difficult to predict the early-age cracks of strain restrained concrete members due to environmentally sensitive parameters. A new method is proposed to predict the cracks by test of autogenous deformation and self-induced restrained stress of specimens which simulates early-age crack state by hydration heat of the'Wall-On-Foundation'members. For this purpose, thermal analysis of entire structure considering the environmental condition is performed at first, and the specimens are set up where hydration heat was electronically controlled according to the analysis results. By measuring free deformation and force to compensate the autogenous strain including relaxation, feasibility of cracks can be estimated. The proposed method can predict the occurrence of cracks better than the material test of the early age concrete which has large variance. The method of this study is particularly useful when it is used as a preliminary experiments to predict the crack more precisely before full-scale concrete placement in construction of large structures.

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

Probabilistic Service Life Analysis of GGBFS Concrete Exposed to Carbonation Cold Joint and Loading Conditions (탄산화에 노출된 GGBFS 콘크리트의 콜드 조인트 및 하중 재하를 고려한 확률론적 내구수명 해석)

  • Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2020
  • Carbonation is a deterioration which degrades structural and material performance by permitting CO2 and corrosion of embedded steel. Service life evaluation through deterministic method is conventional, however the researches with probabilistic approach on service life considering loading and cold joint effect on carbonation have been performed very limitedly. In this study, probabilistic service life evaluation was carried out through MCS (Monte Carlo Simulation) which adopted random variables such as cover depth, CO2 diffusion coefficient, exterior CO2 concentration, and internal carbonatable materials. Probabilistic service life was derived by changing mean value and COV (Coefficient of variation) from 100 % to 300 % and 0.1 ~ 0.2, respectively. From the analysis, maximum reduction ratio (47.7%) and minimum reduction ratio (11.4%) of service life were obtained in cover depth and diffusion coefficient, respectively. In the loading conditions of 30~60% for compressive and tensile stress, GGBFS concrete was effective to reduce cold joint effect on carbonation. In the tensile condition, service life decreased linearly regardless of material types. Additionally service life rapidly decreased due to micro crack propagation in the all cases when 60% loading was considered in compressive condition.

생쥐의 자궁내막에서 발정주기에 따른 aquaporin 4, 5, 8의 발현양상과 존재부위

  • 이지원;계명찬;강수만;이성은;강한승;김문규
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.61-61
    • /
    • 2003
  • Aquaporins (AQPs)는 다양한 상피세포와 내피세포에 존재하며 다량의 물 수송을 촉진하는 막성단백질로 현재 11개의 AQP가 (AQP0-10) 발견되었으나, 아직 생리적, 기능적 분석은 불충분한 상태이다. 생쥐의 자궁내막은 발정주기 동안 호르몬의 자극에 따라 부풀어오르거나 수축하는 변화를 보이며 에스트로젠과 몇몇 혈관에 작용하는 매개체에 의해 자궁 혈관의 투수성이 증가한다는 보고는 있으나, 자궁액의 수송 메커니즘에 대해서는 뚜렷하게 밝혀진 바가 없다. 발정기의 생쥐 자궁은 자궁내막세포의 증식과 함께 수화되는 특징을 보이며 자궁내강으로 물이 수송되어 luminal fluid의 점성이 낮아지는 현상이 나타나는데, 이 때 AQP가 water channel로서 중요한 역할을 할 것으로 보고 본 실험에서는 면역조직화학법(immunohistochemistry)과 역전사중합효소연쇄반응(Reverse-transcriptase polymerase chain reaction)을 통해 발정기 자궁의 수화와 AQP 발현의 상관성에 대해 알아보고자 하였다. 면역조직화학법의 결과 발정주기의 다른 시기에 비해 발정기(estrus phase)에 자궁상피세포에 AQP4, 5, 8 protein이 다량 존재하는 것으로 밝혀졌고, 근육층(myometrium)에서의 발현은 발정주기 동안 차이가 없었다. Whole uterus로 RT-PCR을 수행한 결과 AQP4, 5, 8 mRNA는 luteal phase에 비해 follicular phase에 더 많이 발현하는 것으로 확인되었다. 또한 LCM(Laser Capture Microdissection) system을 이용하여 luminal epithelium과 stromal cell을 분리하여 RT-PCR을 수행한 결과 AQP4, 5, 8 mRNA는 stromal cell 보다는 luminal epithelium에 더 많이 발현하며, 이 역시 follicular phase에 발현량이 증가함을 확인하였다. 이러한 결과로 미루어 생쥐 자궁에서 AQP4, 5, 8은 발정주기 내막에 발현이 증가하며 이는 자궁내강 안으로 수분을 수송하는데 주요한 기작으로 사료되며 estrogen에 의한 조절 가능성을 암시한다.

  • PDF